TD 21 : Séries numériques - Corrigé

Exo1: Soit k € Nette [k, k+1].
La fonction est décroissante donc g(k) > g(t) > g(k + 1).

Puis g(k) = [F g(k) dt > [Fgyar > [ gk + 1) dt = g(k +1).

Done 3 1g<> <>dt>zz*;g<>
Ainsi fl z)dr < Zk L9(k).
Et g(1 )+z;;+;g( (1) + [ g(t) dt done 7_, g(k) D+ [y

Puis pour g : t +— 7 decrmssante sur Rj_. On déduit un encadrement en calculant :
”dtf[Q\f] 2(y/n —1).
Donc 2(v/n+1—-1) < y/nu, <14 2(y/n—1) puis 2(7%171) <, < M% Or les suite

2(‘/@71) et 2‘/\/2_1 tendent vers 2.

Donc u,, — 2 par thm d’encadrement.

Exo 2: 1. Si Y u, est ACV alors u,, — 0. Donc il existe N € N tel que Vn > N, |u,| < 1. On
en déduit que APCR 0 < u% < |un| < 1. Donc par comaparaison sur les séries a termes
positifs : Y- u2 CV car Y |uy,| converge.

- —1)" N s L ‘- , .
2. La série ) ( \/H) converge d’apres le critere spécial des séries alternées. En effet, la suite

(i> est bien positive, décroissante et tend vers 0.
Vi) n>0

Pourtant ) <( 1)”) =" 1 la série harmonique diverge.

Ex03:1.Onau, = \/;E;(lznl)n ~ (7\/1%" = v, avec »_ v, converge d’apres le CSSA (voir Exo2).

)n\f (Wnt+(=1)") _ —1 ~ =1

S DN e ey v
Donc la série > (v, — uy,) est de signe constant APCR et de méme nature que %1 cad
divergente.

Puis u,, = (4, — vp) + v, donc Y u,, DV car > (u, —v,) DV et > v, CV.

2. On a u, — v, = (-1

On a u, ~ v, avec »_u, DV et > v, CV. Ce qui montre que I’hypothese de positivité (ou
signe constant) dans le thm de comparaison est nécessaire.

Exo 4 : Si ¢ €]0,1] alors ﬁ
termes positifs, on en déduit que > e fqn)g CV.

~ ¢" avec Y ¢" CV. Par thm de comparaison sur les séries &

Si g =1 alors (143;,)2 = % DVG (car son terme général ne tend pas vers 0)
n n n
Si g > 1 alors (1+qT) an =q " O0rdY ¢gm"=> (%) CV comme série géométrique.

Par thm de comparaison sur les séries & termes positifs, on en déduit que > T +qn)2 CV.

Exo5: 1.0n a ETJLO Uy, = Zgzo(un_ﬂ — Up) = un41 — Ug comme somme télescopique.
2. Ainsi la série > v, CV ssi la suite des sommes partielles >, _,vr CV vers une limite
finie ssi la suite u,+1 — ug CV vers une limite finie ssi u,, CV.
De plus limy, 400 Uy = ug + E:Z% Uy,
3. Soit (vp)n>0 une suite quelconque. On défini u,, = ZZ;S vg alors (Au), = Upt1 — Up =
Up. la suite (u,)p>0 est un antécédent par l'application linéaire A mais n’est pas unique
car KerA est ’ensemble des applications constantes.
Remarque On a donc ici A pour les suites est ’"analogue de la dérivation pour les fonctions.

Et 2o (Au),, = lim, 4o —ug est I'analogue de f f'= f()— f(a) le thm fondamentale
de l’analyse différentielle.
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4. On a Zn:l n(n+1) = En:1 n ntl =1- hm""‘“’o n+1 =1
— v/n avec y/n — +oo donc la série DV

1/2
n+1

o)
I
g
|
S
I
3
+
-

=L+ = Ly éléments simples.

avec 3 (% — n%rl) — 0 donc la série converge et 3% - =1 (1-1)-0=1.

On a sin 5 sin 237 = & (cos (i’;;ﬂ” — cos (iZjﬂ”) = 1 cos ST — 5 008 5y avec
308 5 — <90 = 1/2.

Donc la série CV et ZI:} sin 4”71 sin 285 =1/2 — Lcosm = 1.

Ona A5 (In(1+4) - 1“7") = 5 (In(n+ 1) — 2L n(n)) = % — 20 avec 27— 0
done Y129 A (In(1+ L) —r) =0 =81 =,

Exo6: ® > Z+%2: Ona 32nn+151 ~ (2/3)™ avec Y (2/3)™ CV en tant que série géométrique.

Donc par thm de comparaison sur les séries a termes positifs, la série CV.

® > ;L—: : On note u, = g—j > 0 le terme général de la série. On a 2= = (n +
1)%/n2. 2"/2”+1 — 1<l Donc d’apres la regle d’Alembert, la série CV.

® Y. 2;: Onnoteu, = 2; = > 0 le terme général de la série. On a Zotl — r+1 —0<1.

Donc d’apres la regle d’ Alembert la série CV.

® >4 -z CV comme série de Riemann avec a = 2 > 1.

® Y.n'"(a>0): CVssi—Ina>1ssia< 1/ecomme série de Riemann.

® . 1“7” : Ona 1“7” > % pour n > e avec » % la série harmonique DV. Donc par thm

de comparaison (APCR) sur les séries a termes positifs, la série DV.

® Y.m?sin(27") :  On a n?sin(27") ~ ;’—n = 0((3/4)"™) avec >.(3/4)™ CV. Donc par

thm de comparaison (APCR) sur les séries & termes positifs, la série CV.

® Z(%-ﬁ-ﬁ)n Ona0<?l +f< APCR. D0n00<< ﬁ)ng(%)HAvecla

série Y (2/3)™ CV donc par thm de comparaison la série CV.
Attention : On ne peut pas passer & la puissance n dans un équivalent. Donc (% + ﬁ)n

n’est pas équivalent a (1/2)".
n2 TL2
® >(1-2)", Onau,=(1-2)" =exp(n®ln(l —1/n)) = exp(n?*(—1/n—1/2n*+
o(1/n?))) = e " 1/2eo() ~ %e*”. Car o(1) — 0 donc e°™) — 1 cad e®™ ~ 1.
Puis Y e ™ CV en tant que série géométrique de raison 1/e < 1.
Donc par thm de comparaison sur les séries a termes positifs > u,, CV.
® Zﬁ, On note u,, = (27?)_1 = ;L—;j ~ ‘{;,:7 = 0(1/2)™ d’apres les intégrales de
Wallis. Donc > u,, CV.
Une méthode plus élémentaire est la regle d’Alembert :

On a 2= = (2n5r"2';(12);+1 — 1/4 < 1 donc la série ZUn CV.
® Z In( n+12L In(n) OIl a ln(nJrlr)l In(n) _ ln(1+1/n) ]./TL avec Zl/n CV. Donc

par thm de comparalson sur les séries & termes posmfs la série CV.
® > lnygl), Ona & = o(y/n/n?) = o(1/n/?) avec 3 1/n*/? une série de Riemann CV.
Donc par thm de comparaison sur les séries a termes positifs, la série CV.

® > "nti‘f, On a ”ngfrlln ~ 1/n avec > 1/n DV. Donc par thm de comparaison sur les

séries a termes positifs, la serle DV.

® Y —=t—, Ona —z— =o0(1/n?) avec Y 1/n® CV. Donc par thm de comparaison
sur les séries a termes positifs, la série CV.

® > m, On a m > \/ﬁl\/ﬁ = 1/n avec > 1/n DV. Donc par thm de compa-
raison sur les séries a termes positifs, la série DV.
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® Ye V™ Onae V" =o0(1/n?) avec 3. 1/n? CV. Donc par thm de comparaison sur

les séries a termes positifs, la série CV.

® (£ )2n+1 On note u, = ( snl)zn et onalnu, = (2n+1)In %5 = —(2n +
1)In(4/3— 1/3n) —(2n+1)[In(4/3)+In(1—-1/4n)] = —(2n+1)[In(4/3)—1/4n+o(1/n)] =

—2In(4/3)n + [1/2 — In(4/3)] + o(1).

Donc u,, ~ Ce 24/3" ayvec C' = exp[1/2 — In(4/3)] avec Y e~2(4/3)7 CV comme série

géométrique de raison e 2(4/3) = 9/16 < 1. Donc par thm de comparaison sur les séries

a termes positifs, la série CV.

® Zan(a b>0) Si b < 1 alors 1+bn ~ a" la série CV ssi a < 1.

Sib=1alors 12— ~ a"/2 la série CV ssi a < 1.

"
Sib>1alors 12— ~ (a/b)" la série CV ssi a < b.
® > bw?& (a,b>0), Si b <1 alors bfff;\; ~ “;3? = a" la série CV ssi a < 1.

Si b> 1 alors 220 (a/b)"2V"™ la série CV ssi a/b < 1 ssi a < b.

bn42vVn
En effet > q?q{ CV ssi g1 < 1 car d’apres la regle d’Alembert :
n+1_+n+1
G SR Vntl-yvn _ —
o = q145 — q1 car v/n + Vn = f+\/7_>0

® Z(n +3) — (n? +2)3(a € R)

On a (nf +3)* = n% (14 3/n%)* = n® (14 a3/n’ + o(1/nb)) = nb + 3an®*=6 4 o(n®*=5)
Et (n? +2)3 = nf (1+42/n2)*" = 1% (1 + 6a/n? + 3a(3a — 1)/2(4/n*) + o(1/n%)) =
n% + 6an® =2 + 6a(3a — 1)n®=* 4 o(nbe—1).

Donc (n+3)% — (n? +2)3¢ = —6an5=2 —6a(3a —1)n5=*1 +0(n®=*) ~ —6an5=2 si a # 0.
Or > n% =2 CV ssi 6a — 2 < —1 ssi a < —1/2 en tant que série de Riemann. Si a = 0 la
série est nulle donc CV.

Exo 7 : On suppose > u, CV alors u,, — 0 donc HuT ~ wu,. Par thm de comparaison sur les
séries a termes positifs,

2 2
Réciproquement si Y 1“” CV alors 11 — 0 donc u,, — #Zn = 1_7:2 avec 0 < 72— <
rra—. Donc la série S 7% CV par thm de comparaison et donc } 72~ CV comme
combmalson linéaire.
n n
Exo 8 : Onnoteu, = ;5. Ona == = (”:!1)! g = (1 — ﬁ) =exp[nln(l—1/(n+1)] ~

exp(—n/(n+1)) — L < 1. Donc la série Y u,, CV par la régle d’Alembert.

1 sia<1
_ n® Unt+1 __ (n+1\% 1 . _
On note v,, = Fo0Ted (Fan On a = = (T) ot — 1/2 sia=1.Donc
0 sinon

la regle d’Alembert montre que pour a > 1 la série converge et sinon on ne sait pas.

5"

Wni1 _ g (Lﬂ)z N g < 1. Donc > w, CV.

7 W n

Ex09:1. Onab, —b,1 =In (a:—’ll) =1In (n'/(n — 1)l /e~ t(n —1)""/n"\/n — 1/n) =
In [ne((n—1)/n)" 142 /n] =1+ (n—1/2)In(1 — 1/n) =400 1 + (n — 1/2)(=1/n —
1/2n2 4+ 0(1/n3)) =0+ 0/n + O(1/n?).

Or >"1/n? CV donc la série > b, — b,_1 est ACV donc CV.
Puis cette série télescopique montre que la suite (by,)n>0 admet une limite finie.

On note w,, =

2. On note [ = limb,,. Donc a,, ~ e!. Puis par opération n! ~ e ( ) f Reste a déterminer

la valeur de C = ¢! > 0. On a 7 ~ 321(7;(:)',); 24n ngZ((gT/iZ;";n 7. Donc C? = 27 puis

= V2.

(2n)! Varn(2n/e)?™ 4\"M ‘s . . _
3. Ona == Sy T V2 (E) . Donc la série CV ssi ae > 4 ssi a > 4e™!
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Exo 10 : 1. On a |a,| = |b,| = [t|™ avec Y [t|™ CV en tant que série géométrique. Donc les séries
sont ACV.
On peut en déduire que leurs produit de Cauchy > ¢, est également ACV.

2. Onacy, =Y p_gakbni =Y poti(—t)"F=t">)_(-1)" k= {

t"  sin est pair

0 si n est pair’

3. Ona Zn 0q" %q pour ¢ €] — 1,1[ d’apres le cours.
Ainsi Z Z0n = 7 et Z+°o b, = %th

Puis Zn 0¢n = Zk OC% = Zﬁg t2h = 1—1t2'

On a bien LL

ST = e
Exo 11 : 0. Les séries > u, et > v, sont CV d’aprés le CSSA mais elle ne sont pas ACV.

(-1~ k n n 1
1. Onac, Zk 0 UkUn—k = = Y 0 k+1 ‘1n(n k+T) = (-1 Zk 0 k+1D) In(n—k+2) * Or
— 1.

len| = >0 (k:+1)ln(n ) 2 k=0 (k:+1)ln(n+2) Tn( n+2) 2o k+1
Donc on ne peut pas avoir ¢, — 0 et la série Y _ ¢, DVG.

2. On étudie w, = >} _guktn—r = (—=1)" > 7 _, m Puis |w,| = >0, kr_ﬁz) +

1/(n4+2) _ 1 n 1 n 1 _ _2 n 1
L0 — s (S i + Yo i) = 725 Lo iy avee le changement de va-

riables k - n — k

. _ 2 wntl g 2 w1 2 2 2 no_1
Puis [t 1| —fwn| = e ko EENE Sreo i = ot (5 - 55 ) Sheo v
= 2 A <0.

(n+3)(n+2) (n+3)(n+2) k=0 k+1
Donc la suite |w,| est décroissante. De plus [w,| = 5 > p_g k%u ~ 0,
Donc d’apres le CSSA, la série > w, CV.

Remarque : Dans le cas ou les séries sont CV mais ne sont pas ACV, ils existent des produits
de Cauchy DV (ex 1.) et des produits CV (ex 2.)

Exo 12: 1. Faux ), % la série harmonique DV.

2. Faux pour u, = L/n* Sf " Palr .
2" si n impair

La série Y u, CV mais la suite (u,) n’est pas monotone.

3. Faux pour u, = 5, ona Y u, CVet > uZ =3 1DV.

4. Vrai car APCR 0 < u% < up, < 1. Donc on obtient le résultat par comparaison sur les

séries a termes positifs.

5. Faux ceci montre u, ~ # mais ne suffit pas & la obtenir la CV. En effet, u, =

(_i)n 41~ 1) . On a > u, DV comme combinaison hnealre entre Y 0t 1) CV et

nlnn
> nlnn DV. Car on peut comparer & une intégrale avec f(t) = décroissante positive

sur [e, +oo| et feN i — mint]Y =Inln N — +oo.

tlnt

6. Vrai ceci montre que u, ~ & lun| ~ - puis la série est ACV donc CV.
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