
TD 21 : Séries numériques - Corrigé

Exo 1 : Soit k ∈ N et t ∈ [k, k + 1].
La fonction est décroissante donc g(k) ≥ g(t) ≥ g(k + 1).

Puis g(k) =
∫ k+1

k
g(k) dt ≥

∫ k+1

k
g(t) dt ≥

∫ k+1

k
g(k + 1) dt = g(k + 1).

Donc
∑n

k=1 g(k) ≥
∫ n+1

1
g(t) dt ≥

∑n+1
k=2 g(k).

Ainsi
∫ n+1

1
g(x)dx ≤

∑n
k=1 g(k).

Et g(1) +
∑n+1

k=2 g(k) ≤ g(1) +
∫ n+1

1
g(t) dt donc

∑n
k=1 g(k) ≤ g(1) +

∫ n

1
g(t) dt.

Puis pour g : t 7→ 1√
t
décroissante sur R∗

+. On déduit un encadrement en calculant :∫ n

1
dt√
t
=

[
2
√
t
]n
1
= 2(

√
n− 1).

Donc 2(
√
n+ 1− 1) ≤

√
nun ≤ 1 + 2(

√
n− 1) puis 2(

√
n+1−1)√

n
≤ un ≤ 2

√
n−1√
n

. Or les suite

2(
√
n+1−1)√

n
et 2

√
n−1√
n

tendent vers 2.

Donc un → 2 par thm d’encadrement.

Exo 2 : 1. Si
∑

un est ACV alors un → 0. Donc il existe N ∈ N tel que ∀n ≥ N, |un| ≤ 1. On
en déduit que APCR 0 ≤ u2

n ≤ |un| ≤ 1. Donc par comaparaison sur les séries à termes
positifs :

∑
u2
n CV car

∑
|un| converge.

2. La série
∑ (−1)n√

n
converge d’après le critère spécial des séries alternées. En effet, la suite(

1√
n

)
n≥0

est bien positive, décroissante et tend vers 0.

Pourtant
∑(

(−1)n√
n

)2

=
∑

1
n la série harmonique diverge.

Exo 3 : 1. On a un = (−1)n√
n+(−1)n

∼ (−1)n√
n

= vn avec
∑

vn converge d’après le CSSA (voir Exo2).

2. On a un − vn = (−1)n
√
n−(

√
n+(−1)n)

(
√
n+(−1)n)

√
n

= −1
n+(−1)n

√
n
∼ −1

n .

Donc la série
∑

(vn − un) est de signe constant APCR et de même nature que
∑ −1

n càd
divergente.
Puis un = (un − vn) + vn donc

∑
un DV car

∑
(un − vn) DV et

∑
vn CV.

On a un ∼ vn avec
∑

un DV et
∑

vn CV. Ce qui montre que l’hypothèse de positivité (ou
signe constant) dans le thm de comparaison est nécessaire.

Exo 4 : Si q ∈]0, 1[ alors qn

(1+qn)2 ∼ qn avec
∑

qn CV. Par thm de comparaison sur les séries à

termes positifs, on en déduit que
∑ qn

(1+qn)2 CV.

Si q = 1 alors qn

(1+qn)2 = 1
2 DVG (car son terme général ne tend pas vers 0)

Si q > 1 alors qn

(1+qn)2 ∼ qn

q2n = q−n. Or
∑

q−n =
∑(

1
q

)n

CV comme série géométrique.

Par thm de comparaison sur les séries à termes positifs, on en déduit que
∑ qn

(1+qn)2 CV.

Exo 5 : 1. On a
∑N

n=0 vn =
∑N

n=0(un+1 − un) = uN+1 − u0 comme somme télescopique.

2. Ainsi la série
∑

vn CV ssi la suite des sommes partielles
∑n

k=0 vk CV vers une limite
finie ssi la suite un+1 − u0 CV vers une limite finie ssi un CV.
De plus limn→+∞ un = u0 +

∑+∞
n=0 vn.

3. Soit (vn)n≥0 une suite quelconque. On défini un =
∑n−1

k=0 vk alors (∆u)n = un+1 − un =
vn. la suite (un)n≥0 est un antécédent par l’application linéaire ∆ mais n’est pas unique
car Ker∆ est l’ensemble des applications constantes.
Remarque : On a donc ici ∆ pour les suites est l’analogue de la dérivation pour les fonctions.

Et
∑+∞

n=0(∆u)n = limn→+∞ −u0 est l’analogue de
∫ b

a
f ′ = f(b)− f(a) le thm fondamentale

de l’analyse différentielle.
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4. On a
∑N

n=1
1

n(n+1) =
∑N

n=1
1
n − 1

n+1 = 1− limn→+∞
1

n+1 = 1.

On a 1√
n+

√
n+1

=
√
n+1−

√
n

(n+1)−n =
√
n+ 1−

√
n avec

√
n → +∞ donc la série DV

On a : 1
n3−n = 1

(n−1)n(n+1) =
1/2
n−1 + −1

n + 1/2
n+1 éléments simples.

= 1
2

(
1

n−1 − 1
n

)
− 1

2

(
1
n − 1

n+1

)
.

avec 1
2

(
1
n − 1

n+1

)
→ 0 donc la série converge et

∑+∞
n=2

1
n3−n = 1

2

(
1− 1

2

)
− 0 = 1

4 .

On a sin π
4n2−1 sin

2nπ
4n2−1 = 1

2

(
cos (2n−1)π

4n2−1 − cos (2n+1)π
4n2−1

)
= 1

2 cos
π

2n+1 − 1
2 cos

π
2n−1 avec

1
2 cos

π
2n+1 → cos 0

2 = 1/2.

Donc la série CV et
∑+∞

n=1 sin
π

4n2−1 sin
2nπ

4n2−1 = 1/2− 1
2 cosπ = 1.

On a 1
n+1

(
ln(1 + 1

n )−
lnn
n

)
= 1

n+1

(
ln(n+ 1)− n+1

n ln(n)
)
= ln(n+1)

n+1 − lnn
n . avec lnn

n → 0

donc
∑+∞

n=1
1

n+1

(
ln(1 + 1

n )−
lnn
n

)
= 0− ln 1

1 = 0.

Exo 6 : ⊗
∑

2n+5
3n−11 : On a 2n+5

3n−11 ∼ (2/3)n avec
∑

(2/3)n CV en tant que série géométrique.
Donc par thm de comparaison sur les séries à termes positifs, la série CV.

⊗
∑

n2

2n : On note un = n2

2n > 0 le terme général de la série. On a un+1

un
= (n +

1)2/n2.2n/2n+1 → 1
2 < 1. Donc d’après la règle d’Alembert, la série CV.

⊗
∑

2n

n! : On note un = 2n

n! > 0 le terme général de la série. On a un+1

un
= 2

n+1 → 0 < 1.
Donc d’après la règle d’Alembert, la série CV.

⊗
∑

1
n2 : CV comme série de Riemann avec α = 2 > 1.

⊗
∑

nlna(a > 0) : CV ssi − ln a > 1 ssi a < 1/e comme série de Riemann.

⊗
∑

lnn
n : On a lnn

n ≥ 1
n pour n ≥ e avec

∑
1
n la série harmonique DV. Donc par thm

de comparaison (APCR) sur les séries à termes positifs, la série DV.

⊗
∑

n2 sin(2−n) : On a n2 sin(2−n) ∼ n2

2n = o((3/4)n) avec
∑

(3/4)n CV. Donc par
thm de comparaison (APCR) sur les séries à termes positifs, la série CV.

⊗
∑(

1
2 +

1√
n

)n
: On a 0 ≤ 1

2 +
1√
n
≤ 2

3 APCR. Donc 0 ≤
(

1
2 + 1√

n

)n

≤
(
2
3

)n
Avec la

série
∑

(2/3)n CV donc par thm de comparaison la série CV.
Attention : On ne peut pas passer à la puissance n dans un équivalent. Donc

(
1
2 + 1√

n

)n
n’est pas équivalent à (1/2)n.

⊗
∑(

1− 1
n

)n2

, On a un =
(
1− 1

n

)n2

= exp
(
n2 ln(1− 1/n)

)
= exp(n2(−1/n−1/2n2+

o(1/n2))) = e−n−1/2eo(1) ∼ 1√
e
e−n. Car o(1) → 0 donc eo(1) → 1 càd eo(1) ∼ 1.

Puis
∑

e−n CV en tant que série géométrique de raison 1/e < 1.
Donc par thm de comparaison sur les séries à termes positifs

∑
un CV.

⊗
∑

1

(2nn )
, On note un =

(
2n
n

)−1
= n!2

2n! ∼
√
πn
4n = o(1/2)n d’après les intégrales de

Wallis. Donc
∑

un CV.
Une méthode plus élémentaire est la règle d’Alembert :

On a un+1

un
= (n+1)2

(2n+2)(2n+1) → 1/4 < 1 donc la série
∑

un CV.

⊗
∑ ln(n+1)−ln(n)

n , On a ln(n+1)−ln(n)
n = ln(1+1/n)

n ∼ 1/n
n = 1/n2 avec

∑
1/n2 CV. Donc

par thm de comparaison sur les séries à termes positifs, la série CV.

⊗
∑ ln(n)

n2 , On a ln
n2 = o(

√
n/n2) = o(1/n3/2) avec

∑
1/n3/2 une série de Riemann CV.

Donc par thm de comparaison sur les séries à termes positifs, la série CV.

⊗
∑

n+lnn
n2+1 , On a n+lnn

n2+1 ∼ 1/n avec
∑

1/n DV. Donc par thm de comparaison sur les
séries à termes positifs, la série DV.

⊗
∑

1
n3 lnn , On a 1

n3 lnn = o(1/n3) avec
∑

1/n3 CV. Donc par thm de comparaison
sur les séries à termes positifs, la série CV.

⊗
∑

1√
n lnn

, On a 1√
n lnn

≥ 1√
n
√
n
= 1/n avec

∑
1/n DV. Donc par thm de compa-

raison sur les séries à termes positifs, la série DV.
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⊗
∑

e−
√
n, On a e−

√
n = o(1/n2) avec

∑
1/n2 CV. Donc par thm de comparaison sur

les séries à termes positifs, la série CV.

⊗
∑(

3n
4n−1

)2n+1
, On note un =

(
3n

4n−1

)2n+1
et on a lnun = (2n + 1) ln 3n

4n−1 = −(2n +
1) ln(4/3−1/3n) = −(2n+1)[ln(4/3)+ln(1−1/4n)] = −(2n+1)[ln(4/3)−1/4n+o(1/n)] =
−2 ln(4/3)n+ [1/2− ln(4/3)] + o(1).
Donc un ∼ Ce−2 ln(4/3)n avec C = exp[1/2 − ln(4/3)] avec

∑
e−2 ln(4/3)n CV comme série

géométrique de raison e−2 ln(4/3) = 9/16 < 1. Donc par thm de comparaison sur les séries
à termes positifs, la série CV.

⊗
∑

an

1+bn (a, b > 0), Si b < 1 alors an

1+bn ∼ an la série CV ssi a < 1.

Si b = 1 alors an

1+bn ∼ an/2 la série CV ssi a < 1.

Si b > 1 alors an

1+bn ∼ (a/b)n la série CV ssi a < b.

⊗
∑

an2
√

n

bn+2
√

n (a, b > 0), Si b ≤ 1 alors an2
√

n

bn+2
√

n ∼ an2
√

n

2
√

n = an la série CV ssi a < 1.

Si b > 1 alors an2
√

n

bn+2
√

n ∼ (a/b)n2
√
n la série CV ssi a/b < 1 ssi a < b.

En effet
∑

qn1 q
√
n

2 CV ssi q1 < 1 car d’après la règle d’Alembert :
qn+1
1 q

√
n+1

2

qn1 q
√

n
2

= q1q
√
n+1−

√
n

2 → q1 car
√
n+ 1−

√
n = 1√

n+
√
n+1

→ 0.

⊗
∑

(n6 + 3)a − (n2 + 2)3a(a ∈ R)
On a (n6 + 3)a = n6a(1 + 3/n6)a = n6a

(
1 + a3/n6 + o(1/n6)

)
= n6a + 3an6a−6 + o(n6a−6)

Et (n2 + 2)3a = n6a
(
1 + 2/n2

)3a
= n6a

(
1 + 6a/n2 + 3a(3a− 1)/2(4/n4) + o(1/n4)

)
=

n6a + 6an6a−2 + 6a(3a− 1)n6a−4 + o(n6a−4).
Donc (n6+3)a− (n2+2)3a = −6an6a−2−6a(3a−1)n6a−4+o(n6a−4) ∼ −6an6a−2 si a ̸= 0.
Or

∑
n6a−2 CV ssi 6a − 2 < −1 ssi a < −1/2 en tant que série de Riemann. Si a = 0 la

série est nulle donc CV.

Exo 7 : On suppose
∑

un CV alors un → 0 donc un

1+un
∼ un. Par thm de comparaison sur les

séries à termes positifs,
∑ un

1+un
CV.

Réciproquement si
∑ un

1+un
CV alors un

1+un
→ 0 donc un − un

1+un
=

u2
n

1+un
avec 0 ≤ u2

n

1+un
≤

un

1+un
. Donc la série

∑ u2
n

1+un
CV par thm de comparaison et donc

∑ un

1+un
CV comme

combinaison linéaire.

Exo 8 : On note un = n!
nn . On a un+1

un
= (n+1)!

n!
nn

(n+1)n+1 =
(
1− 1

n+1

)n

= exp [n ln(1− 1/(n+ 1)] ∼
exp(−n/(n+ 1)) → 1

e < 1. Donc la série
∑

un CV par la règle d’Alembert.

On note vn = nα

(1+a)(1+a2)...(1+an) . On a vn+1

vn
=

(
n+1
n

)α 1
1+an+1 →


1 si a < 1

1/2 si a = 1

0 sinon

. Donc

la règle d’Alembert montre que pour a ≥ 1 la série converge et sinon on ne sait pas.

On note wn = 5nn2

7n . On a wn+1

wn
= 5

7

(
n+1
n

)2 → 5
7 < 1. Donc

∑
wn CV.

Exo 9 : 1. On a bn − bn−1 = ln
(

an

an−1

)
= ln

(
n!/(n− 1)!en/en−1(n− 1)n−1/nn

√
n− 1/n

)
=

ln
[
ne((n− 1)/n)n−1+1/2/n

]
= 1 + (n − 1/2) ln(1 − 1/n) =n→+∞ 1 + (n − 1/2)(−1/n −

1/2n2 +O(1/n3)) = 0 + 0/n+O(1/n2).
Or

∑
1/n2 CV donc la série

∑
bn − bn−1 est ACV donc CV.

Puis cette série télescopique montre que la suite (bn)n≥0 admet une limite finie.

2. On note l = lim bn. Donc an ∼ el. Puis par opération n! ∼ el
(
n
e

)n √
n. Reste à déterminer

la valeur de C = el > 0. On a π ∼ 24n(n!)4

n((2n)!)2 ∼ 24n C4(n/e)4nn2

nC2(2n/e)4n2n ∼ C2

2 . Donc C2 = 2π puis

C =
√
2π.

3. On a (2n)!
n!annn ∼

√
4πn(2n/e)2n√

2πn(n/e)nannn
∼

√
2
(

4
ae

)n
. Donc la série CV ssi ae > 4 ssi a > 4e−1.

N.Provost LMB-PCSI1



Exo 10 : 1. On a |an| = |bn| = |t|n avec
∑

|t|n CV en tant que série géométrique. Donc les séries
sont ACV.
On peut en déduire que leurs produit de Cauchy

∑
cn est également ACV.

2. On a cn =
∑n

k=0 akbn−k =
∑n

k=0 t
k(−t)n−k = tn

∑n
k=0(−1)n−k =

{
tn si n est pair

0 si n est pair
.

3. On a
∑+∞

n=0 q
n = 1

1−q pour q ∈]− 1, 1[ d’après le cours.

Ainsi
∑+∞

n=0 an = 1
1−t et

∑+∞
n=0 bn = 1

1+t .

Puis
∑+∞

n=0 cn =
∑+∞

k=0 c2k =
∑+∞

k=0 t
2k = 1

1−t2 .

On a bien 1
1−t

1
1+t =

1
1−t2 .

Exo 11 : 0. Les séries
∑

un et
∑

vn sont CV d’après le CSSA mais elle ne sont pas ACV.

1. On a cn =
∑n

k=0 ukvn−k =
∑n

k=0
(−1)k

k+1
(−1)n−k

ln(n−k+2) = (−1)n
∑n

k=0
1

(k+1) ln(n−k+2) . Or

|cn| =
∑n

k=0
1

(k+1) ln(n−k+2) ≥
∑n

k=0
1

(k+1) ln(n+2) =
1

ln(n+2)

∑n
k=0

1
k+1 → 1.

Donc on ne peut pas avoir cn → 0 et la série
∑

cn DVG.

2. On étudie wn =
∑n

k=0 ukun−k = (−1)n
∑n

k=0
1

(k+1)(n−k+1) . Puis |wn| =
∑n

k=0
1/(n+2)

k+1 +

1/(n+2)
n−k+1 = 1

n+2

(∑n
k=0

1
k+1 +

∑n
k=0

1
n−k+1

)
= 2

n+2

∑n
k=0

1
k+1 avec le changement de va-

riables k → n− k

Puis |wn+1|−|wn| = 2
n+3

∑n+1
k=0

1
k+1−

2
n+2

∑n
k=0

1
k+1 = 2

(n+3)(n+2)+
(

2
n+3 − 2

n+3

)∑n
k=0

1
k+1

= 2
(n+3)(n+2) −

2
(n+3)(n+2)

∑n
k=0

1
k+1 ≤ 0.

Donc la suite |wn| est décroissante. De plus |wn| = 1
n+2

∑n
k=0

1
k+1 ∼ lnn

n → 0.
Donc d’après le CSSA, la série

∑
wn CV.

Remarque : Dans le cas où les séries sont CV mais ne sont pas ACV, ils existent des produits
de Cauchy DV (ex 1.) et des produits CV (ex 2.)

Exo 12 : 1. Faux
∑

1
n la série harmonique DV.

2. Faux pour un =

{
1/n2 si n pair

2−n si n impair

La série
∑

un CV mais la suite (un) n’est pas monotone.

3. Faux pour un = 1
n2 , on a

∑
un CV et

∑
u2
n =

∑
1
n DV.

4. Vrai car APCR 0 < u2
n ≤ un ≤ 1. Donc on obtient le résultat par comparaison sur les

séries à termes positifs.

5. Faux ceci montre un ∼ (−1)n

n mais ne suffit pas à la obtenir la CV. En effet, un =
(−1)n

n + 1
n lnn ∼ (−1)n

n . On a
∑

un DV comme combinaison linéaire entre
∑ (−1)n

n CV et∑
1

n lnn DV. Car on peut comparer à une intégrale avec f(t) = 1
t ln t décroissante positive

sur [e,+∞[ et
∫ N

e
dt

t ln t = [ln ln t]
N
e = ln lnN → +∞.

6. Vrai ceci montre que un ∼ (−1)n

n2 donc |un| ∼ 1
n2 puis la série est ACV donc CV.
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