
TD 20 : Intégration - Corrigé

Exo 1 : On utilise les sommes de Riemann :
On a

∑n−1
k=0

sin(π
n )

2+cos( kπ
n )

= sin(π/n)
∑n−1

k=0
1

2+cos(kπ/n)

∼n→+∞
π
n

∑n−1
k=0

1
2+cos(kπ/n) →n→+∞

∫ π

0
dt

2+cos(t) avec tk = kπ
n

=
∫ +∞
0

2 du/(1+u2)
2+(1−u2)/(1+u2) avec la règle de Bioche u = tan(t/2) qui est un changement de

variable bijectif et justifiant donc la convergence de l’intégrale.

=
∫ +∞
0

2 du
3+u2 = 2√

3
[Arctan (u/

√
3)]+∞

0 = π
√
3

3 .

On a
∑n−1

k=0
k
n2Arctan

(
k
n

)
= 1

n

∑n−1
k=0(k/n)Arctan (k/n)

→n→+∞
∫ 1

0
tArctan tdt avec tk = k/n

= [ t
2

2 Arctan (t)]10 −
∫ 1

0
t2

2
1

1+t2 dt par IPP.

= π
8 − 1

2

∫ 1

0

(
1− 1

1+t2

)
dt = π

8 − 1
2 [t−Arctan (t)]10 par décomposition en éléments simples

= π
8 − 1−π/4

2 = π
4 − 1

2 .

Enfin on passe au logarithme pour transformer produit en somme :

ln

(
n2

(∏n
k=1 k

k
)− 4

n2

)
= 2 ln(n)− 4

n2

∑n
k=1 k ln k

= 2 ln(n)− 4
n2

∑n
k=1 [k ln(k/n) + k lnn] = 2 ln(n)− 4

n2

[∑n
k=1 k ln(k/n) +

n(n+1)
2 ln(n)

]
= (2− 4n(n+1)

2n2 ) lnn− 4
n

∑n
k=1(k/n) ln(k/n).

D’une part (2− 4n(n+1)
2n2 ) lnn =

(
2− 2− 2

n

)
lnn = −2 lnn

n → 0.

D’autre part 4
n

∑n
k=1(k/n) ln(k/n) → 4

∫ 1

0
t ln tdt avec tk = k/n.

L’intégrale est faussement impropre en 0 car t ln t →t→0 0 puis on a la calcul par IPP.∫ 1

0
t ln t = [ t

2

2 ln t]10 −
∫ 1

0
t2

2
1
t dt = 0− [ t

2

4 ]
1
0 = −1

4 .

Par combinaison linéaire, on obtient ln

(
n2

(∏n
k=1 k

k
)− 4

n2

)
→ 1.

Puis

(
n2

(∏n
k=1 k

k
)− 4

n2

)
→ e1 = e.

Exo 2 : (Intégrale de Dirichlet)

a) On a déjà f(x) sin(x)x ∼x→0
x
x = 1. Donc f se prolonge par continuité en posant

f(0) = 1.

Puis |f(x)| = | sin(x)−sin(0)|
|x−0| ≤ sup0≤y≤x | sin′(y)| ≤ 1 d’après l’Inégalité des accroisse-

ments finis.

b) Soit x ≥ π/2. On a
∫ x

π/2
f(t) dt =

∫ x

π/2
1
t sin tdt =

[− cos t
t

]x
π/2

−
∫ x

π/2
+ cos t

t2 dt.

Puis
∣∣∣∫ x

π/2
cos t
t2 dt

∣∣∣ ≤ ∫ x

π/2
dt
t2 =

[−1
t

]x
π/2

= 2
π − 1

x .

Et
∣∣∣[− cos t

t

]x
π/2

∣∣∣ = ∣∣∣ cos(x)x

∣∣∣ ≤ 1
x .

Donc
∣∣∣∫ x

π/2
f(t) dt

∣∣∣ ≤ ∣∣∣[− cos t
t

]x
π/2

∣∣∣+ ∣∣∣∫ x

π/2
cos t
t2 dt

∣∣∣ ≤ 1
x + 2

π − 1
x = 2

π .

c) Le prolongement de f en 0 démontre que C =
∫ π/2

0
f(t) dt est bien définie comme

convergent. Puis pour x ≥ 0, on pose F (x) =
∫ x

0
f(t) dt existe d’après la convergence en

0. C’est bien une primitive de f d’après le thm fondamentale de l’analyse différentielle.

Puis |F (x)| ≤
∣∣∣∫ π/2

0
f(t) dt

∣∣∣+ ∣∣∣∫ x

π/2
f(t) dt

∣∣∣ ≤ |C|+ 2
π est bien borné.

Remarque : Ceci démontre que
∫ +∞
0

sin t
t dt converge pourtant elle ne converge pas

absolument.
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Exo 3 : On note F (x) =
∫ x

0
f(t) dt la primitive de f qui s’annule en 0 (Thm fonda). On en déduit

g(x) = F (x)
x = F (x)−F (0)

x−0 →x→0 F ′(0) car F est dérivable en 0. Donc lim0 g = f(0).

Exo 4 : (Inégalité de Cauchy-Schwarz)

Le polynôme P (X) =
∫ b

a
(f(t) +Xg(t))

2
dt = (

∫ b

a
g2)X2 + 2(

∫ b

a
fg)X + (

∫ b

a
f2).

Donc son discriminant est ∆ = 4(
∫ b

a
fg)2 − 4(

∫ b

a
g2)(

∫ b

a
f2). Or pour x ∈ R, on a P (x) ≥ 0

par positivité de l’intégrale. Donc ∆ ≤ 0 puis
(∫ b

a
f(t)g(t)dt

)2

≤
∫ b

a
f(t)2dt

∫ b

a
g(t)2dt.

De plus, on a égalité ssi ∆ = 0 ssi il existe un x0 ∈ R racine double de P

ssi
∫ b

a
(f(t) + x0g(t))

2 dt = 0 ssi ∀t ∈ [a, b], f(t) + x0g(t) = 0 ssi f et g colinéaires.

Exo 5 : On a F (x) = [− cos(t)]x
2

x = cos(x)− cos(x2). Donc F est dérivable comme composée de
fonction C∞. Et F ′(x) = − sin(x) + 2x sin(x2).
Remarque : La dérivée d’une intégrale n’est pas trivial, mais respecte la formule pour a, b
des fonctions dérivables et f une fonction continue :

d
dx

(∫ b(x)

a(x)
f(t) dt

)
= b′(x)f(b(x))− a′(x)f(a(x)).

Exo 6 : On raisonne par majoration. En utilisant le théorème des bornes atteintes : f est conti-
nue sur un segment [0, 1] donc il existe C ∈ R+ tel que pour tout t ∈ [0, 1], |f(t)| ≤ C.

On a 0 ≤ |In| ≤
∫ 1

0

∣∣∣ f(t)t+n

∣∣∣ dt par l’inégalité triangulaire

≤
∫ 1

0
C

t+n dt = [C ln(t+ n)]
1
0 = C ln

(
n+1
n

)
→ 0.

Donc In → 0 par encadrement.

De même 0 ≤ |Jn| ≤
∫ 1

0
|tnf(t)| dt par l’inégalité triangulaire

≤
∫ 1

0
Ctn dt =

[
C tn+1

n+1

]1
0
= C

n+1 → 0.

Donc Jn → 0 par encadrement.

Enfin 0 ≤ |Kn| ≤
∫ 1

0

∣∣∣ f(t)
1+nt

∣∣∣ dt par l’inégalité triangulaire

≤
∫ 1

0
C

1+nt dt =
[
C
n ln(1 + nt)

]1
0
= C ln(n+1)

n → 0.
Donc Kn → 0 par encadrement.

Exo 7 : a) On a f1(x) =
x+1

(x2+1)(x2+3x+2) =
1

(x2+1)(x+2) = 1/5
x+2 + (−1/5)x+2/5

x2+1 .

Donc
∫ 1

0
f1 = [ 15 ln(x+ 2)− 1

10 ln(x
2 + 1) + 2

5Arctan (x)]10 = 1
5 ln(3) +

π
10 − 3

10 ln(2).

b) La fonction t 7→ g(t)fn(t) est bien définie et continue sur le segment [0, 1] donc l’inté-

grale un =
∫ 1

0
g(t)fn(t) dt est bien définie. Puis |un| ≤

∫ 1

0
|g(t)||fn(t)|dt par l’inégalité

triangulaire

≤ sup[0,1] |g|
∫ 1

0
dt

(t2+1)n(t+2) d’après le thm des bornes atteintes avec gC0 sur un seg-
ment
≤ sup[0,1] |g|

∫ 1

0
dt
2 = 1

2 sup[0,1] |g|.
Donc la suite (un)n≥0 est bornée.

c) La fonction fn est continue, strictement décroissante et positive sur [0, 1] car t 7→ 1
t+2

et t 7→ 1
1+t2 le sont.

Donc fn réalise une bijection de [0, 1] vers fn([0, 1]) = [fn(1), fn(0)] = [ 2
−n

3 , 1
2 ].

On a bien 2−n ∈ [ 2
−n

3 , 1
2 ], donc il admet un unique antécédent xn ∈ [0, 1].

d) On sait que fn(xn) = 2−n puis fn+1(xn) =
1

(x2
n+1)n+1(xn+2) = 1

x2
n+1fn(xn) =

2−n

x2
n+1 ≥

2−n

2 = 2−n−1 = fn+1(xn+1).
Puis fn+1(xn) ≥ fn+1(xn+1) donc xn ≤ xn+1 car fn+1 est une bijection décroissante.
Donc la suite (xn)n≥0 est croissante.
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e) La suite (xn)n≥0 est croissante et bornée car xn ∈ [0, 1]. Donc le théorème de conver-
gence monotone montre qu’elle admet une limite finie. On note l = limn→+∞ xn. On
a 2−n = 1

(x2
n+1)n(xn+2) donc (x2

n + 1)n = 2n

(xn+2) puis n ln(1 + x2
n) = n ln(2) − ln(2 +

xn) ∼n→+∞ n ln(2). Or n ln(1 + x2
n) ∼n→+∞ n ln(1 + l2). Donc ln(2) = ln(1 + l2) et

l = 1 car l ≥ 0.

Exo 8 : a) Soit n ∈ N. On a In+1 − In =
∫ e

1
(ln t)n+1 − (ln t)n dt par linéarité

=
∫ e

1
(ln t)n(ln t− 1) dt ≤ 0 car pour 1 ≤ t ≤ e, ln t ≥ 0 et ln t− 1 ≤ 0.

Donc la suite (In)n≥0 est décroissante.
On a I1 =

∫ e

1
ln tdt = [t ln t− t]e1 = 1.

b) On a In+1 =
∫ e

1
1× (ln t)n+1 dt = [t(ln t)n+1]e1 −

∫ e

1
tn+1

t (ln t)n dt par IPP
= e− (n+ 1)In.

c) On a In ≥ 0 car pour t ∈ [1, e], ln t ≥ 0. Donc (n+ 1)In ≥ 0.
Puis 0 ≤ In+1 = e− (n+ 1)In donc (n+ 1)In ≤ e.

d) On en déduit 0 ≤ In ≤ e
n+1 → 0. Donc In → 0 par thm d’encadrement.

Puis nIn = (n+ 1)In − In = e− In+1 − In → e.
Remarque : On en déduit que In ∼n→+∞

e
n .

Exo 9 : On a 0 =
∫ 1

0
f(t) dt−

∫ 1

0
f(t)2 dt =

∫ 1

0
[f(t)− f(t)2] dt =

∫ 1

0
f(t)(1− f(t)) dt.

Or pour tout t ∈ [0, 1], f(t) ∈ [0, 1] donc f(t)(1− f(t)) ≥ 0.
Donc par stricte positivité de l’intégrale, on déduit que pour tout t ∈ [0, 1], f(t)(1−f(t)) = 0.
C’est à dire f(t) ∈ {0, 1}. Or f est continue donc par le TVI si elle n’était pas constante
elle vaudrait une fois 0 et une fois 1 donc prendrait toutes les valeurs intermédiaires ce qui
est absurde. Donc f est constante égale à 0 ou égale à 1.

Exo 10 : D’après le thm de la borne atteinte, il existe c+, c− ∈ [a, b] tel que f(c+) = sup[a,b] |f |
et f(c−) = inf [a,b] |f |.
Puis pour t ∈ [a, b], f(c−)g(t) ≤ f(t)g(t) ≤ f(c+)g(t) car g(t) ≥ 0.

Donc par croissance de l’intégrale f(c−)
∫ b

a
g ≤

∫ b

a
f(t)g(t) dt ≤ f(c+)

∫ b

a
g.

Ainsi λ =
∫ b

a
f(t)g(t) dt/

∫ b

a
g(t) dt est une valeur intermédiaire pour la fonction f continue

entre c− et c+. Donc d’après le TVI, il existe c ∈ [a, b] tel que f(c) = λ càd
∫ b

a
f(t)g(t)dt =

f(c)
∫ b

a
g(t)dt.

Exo 11 : On réalise les décompositions en éléments simples pour pouvoir primitiver.

On a f1(x) =
x4+1
x3−1 = x(x3−1)+x+1

x3−1 = x+ x+1
x3−1 par division euclidienne

= x+ x+1
(x−1)(x−j)(x−j2) = x+ x+1

(x−1)(x2+x+1) par factorisation sur R[X]

= x+ a
x−1 +

b(x+1/2)
x2+x+1 + c

x2+x+1 avec a = 1+1
1+1+1 = 2/3 (multiplier par (x− 1) et x = 1) puis

b(x+1/2)
x2+x+1 + c

x2+x+1 = x+1
(x−1)(x2+x+1)−

2/3
x−1 = 3(x+1)−2(x2+x+1)

3(x−1)(x2+x+1) = −2x2+x+1
3(x−1)(x2+x+1) =

−2x−1
3(x2+x+1) .

Donc b = −2/3 et c = 0.

Donc f1(x) = x+ 2
3

1
x−1 − 2

3
x+1/2
x2+x+1 admet pour primitive

F1(x) =
x2

2 + 2
3 ln |x− 1| − 1

3 (x
2 + x+ 1).

On a f2(x) =
x3−4x2+2x+1
(x2+1)(x2+4) = ax+b

x2+1 + cx+d
x2+22

Puis x3 − 4x2 +2x+1 = (ax+ b)(x2 +4)+ (cx+ d)(x2 +1) = (a+ c)x3 +(b+ d)x2 +(4a+
c)x+ (4b+ d)
Donc a+ c = 1 et 4a+ c = 2 se résout en a = 1/3 et c = 2/3.
Et b+ d = −4 et 4b+ d = 1 se résout en b = 5/3 et d = −17/3.
Ainsi une primitive de f2 est
F2(x) = (1/3) 12 ln(1 + x2) + (5/3)Arctan (x) + (2/3) 12 ln(4 + x2) + (−17/3) 12Arctan (x/2).
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On a f3(x) =
x3+x2

x3+x = 1 + x2−x
x3+x par division euclidienne

= 1 + x−1
x2+1 = 1 + x

x2+1 − 1
x2+1

admet pour primitive F3(x) = x+ 1
2 ln(x

2 + 1)−Arctan (x).

On a f4(x) =
1

2x2+x+1 = 1
2

1
x2+x/2+1/2 = 1

2
1

(x+1/4)2+(
√
7/4)2

admet pour primitive

F4(x) =
1
2

4√
7
Arctan

(
x+1/4√

7/4

)
= 2

√
7

7 Arctan
(√

7(4x+1)
7

)
.
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