
14.1 Sous-espace vectoriel

TD 14 - Corrige

14.1 Sous-espace vectoriel

Indications :
Pour démontrer que F est un sous-espace vectoriel de E, on dispose de plusieurs méthodes :

1. On montre qu’il est non vide et stable par combinaison linéaire.

2. On montre que c’est un espace engendré F = Vect (e1, ..., ep).

3. On montre que c’est le noyau ou l’image d’une application linéaire (c.f. Chapitre 16)

Exo 1 : Méthode 1 : On montre que F est un sous-espace vectoriel de RN.

Non vide La suite nulle vérifie 0 = 12.0− 36.0 donc F est non vide.

Stable par Comb.Lin. Pour (un)n≥0, (vn)n≥0 ∈ F et λ ∈ R.
La suite wn = un + λvn vérifie :
wn+2 = un+2 + λvn+2

= 12un+1 − 36un + λ(12vn+1 − 36vn)
= 12(un+1 + λvn+1)− 36(un + λvn)
= 12wn+1 − 36wn.
Donc (wn)n≥0 ∈ F et F est stable par combinaison linéaire.

Méthode 2 : On montre que F est un espace engendré.

Soit (un)n≥0 ∈ F . C’est une suite récurrente linéaire d’ordre 2.
Le polynôme caractéristique est X2 − 12X + 36 = (X − 6)2.
Donc un = (λ1n+ λ2)6

n = λ1an + λ2bn en posant an = n6n et bn = 6n.
Ainsi F = Vect R [(an)n≥0, (bn)n≥0].

Exo 2 : Méthode 1 : On montre que F est un sous-espace vectoriel de C2(R,R).
Non vide La fonction nulle vérifie 0′′ + 4.0′ + 5.0 = 0 donc F est non vide.

Stable par Comb.Lin. Pour y1, y2 ∈ F et λ ∈ R.
La fonction y = y1 + λy2 est de classe C2 sur R et vérifie :
y′′ = y′′1 + λy′′2
= −4y′1 − 5y1 + λ(−4y′2 − 5y2)
= −4(y′1 + λy′2)− 5(y1 + λy2)
= −4y′ − 5y
Donc y ∈ F et F est stable par combinaison linéaire.

Méthode 2 : On montre que F est un espace engendré.

Soit y ∈ F . C’est une équation différentielle linéaire d’ordre 2 à coefficients constants.
Le polynôme caractéristique est X2 + 4X + 5 = (X + 2)2 + 12.
On pose y1(t) = e−2t cos t et y2(t) = e−2t sin t les solutions homogènes génératrices.
Donc y = λ1y1 + λ2y2 puis F = Vect R (y1, y2).

Exo 3 : Non vide La matrice nulle vérifie A0 = 0 = 0A. Donc E est non vide.

Stable par Comb.Lin. Pour M1,M2 ∈ E et λ ∈ R, on pose M = M1 + λM2.
On a AM = A(M1 + λM2) = AM1 + λAM2 = M1A+ λM2A = (M1 + λM2)A = MA.
Donc M ∈ E et E est stable par combinaison linéaire.

Ainsi E est un R-ev en tant que sous-espace vectoriel de Mn(R).
Exo 4 : a) Non car f1 : x 7→ x et f2 : x 7→ x3 sont croissantes donc monotone mais f = f2− f1

n’est pas monotone car sa dérivée f ′(x) = 3x2 − 1 change de signe.

b) Oui car on peut vérifier les deux conditions :
Non vide : La fonction nulle s’annule en 0.
Stable par Comb.Lin. : Pour deux fonctions f1 et f2 qui s’annule en 0 et λ ∈ R.
On a (f1 + λf2)(0) = f1(0) + λf2(0) = 0.
Ainsi la combinaison linéaire s’annule bien en 0.
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14.1 Sous-espace vectoriel

c) Non car f1 : x 7→ x2 et f2 : x 7→ (x + 1)2 s’annulent (en 0 et en 1 respectivement)
pourtant f1 + f2 ne s’annule pas sur R.

d) Oui car on peut vérifier les deux conditions :
Non vide : La fonction nulle est impaire.
Stable par Comb.Lin. : Soit f1 et f2 impaires et λ ∈ R, on étudie g = f1 + λf2.
Pour t ∈ R, on a g(−t) = f1(−t) + λf2(−t) = −f1(t)− λf2(t) = −g(t).
Ainsi la combinaison linéaire g est une fonction impaire.

Exo 5 : Non vide La partie ∆ est non-vide car la fonction nulle s’écrit 0 = f − f pour f ∈ C.
Stable par Comb.Lin. Pour h1, h2 ∈ ∆, ils existent f1, g1, f2, g2 ∈ C telles que h1 = f1 − g1
et h2 = f2 − g2. Soit λ ∈ R un scalaire.
1er cas : λ ≥ 0 : On a h1 + λh2 = (f1 + λf2)− (g1 + λg2) ∈ ∆
car f1 + λf2 et g1 + λg2 sont des fonctions croissantes.
2eme cas : λ ≤ 0 : On a h1 + λh2 = (f1 − λg2)− (g1 − λf2) ∈ ∆
car f1 + (−λ)g2 et g1 + (−λ)f2 sont des fonctions croissantes.

Dans tous les cas, h1 + λh2 ∈ ∆.
Donc ∆ est un sous-espace vectoriel de E.

Exo 6 : On raisonne par double implication.

(⇐) On suppose par l’absurde que F ∪ G est un espace vectoriel, que F n’est pas inclus
dans G et que G n’est pas inclus dans F . Donc ils existent uF ∈ F \G et uG ∈ G \ F .
On a alors uF , uG ∈ (F ∪ G) donc s = uF + uG ∈ (F ∪ G) car (F ∪ G) est stable par
Comb.Lin.
1er cas : s ∈ F alors uG = s−uF ∈ F car F est stable par Comb.Lin. Absurde car uG /∈ F .
2eme cas : s ∈ G de même uF = s − uG ∈ G car G stable par Comb.Lin. Absurde car
uF /∈ G.

(⇒) On suppose que F ⊂ G ou que G ⊂ F .
1er cas : F ⊂ G alors F ∪G = G est espace vectoriel par hypothèse.
2eme cas : G ⊂ F alors de même F ∪G = F est espace vectoriel.

Exo 7 : On doit montrer que F = E × E est un C-ev par définition.
On note 0F = (0, 0) l’élément neutre et les règles sur l’addition sur les règles usuelles.

Pour le produit externe, on a :
éléments neutres 0C · (x, y) = (0, 0) = 0F
et 1C · (x, y) = (1.x− 0.y, 1.y + 0.x) = (x, y).

associatif (a+ ib) · [(c+ id) · (x, y)]
= (a+ ib) · (c.x− d.y, c.y + d.x)
= (a.(c.x− d.y)− b.(c.y + d.x), a.(c.y + d.x) + b.(c.x− d.y))
= ((ac− bd).x− (ad+ bc).y, (ac− bd).y + (ad+ bc).x)
= ((ac− bd) + i(ad− bc)) · (x, y).
On retrouve bien l’associativité car (a+ ib)(c+ id) = (ac− bd) + i(ad− bc).

double distributif ((a+ ib) + (c+ id)) · (x, y)
= ((a+ c).x− (b+ d).y, (a+ c).y + (b+ d).x)
= ((a.x− b.y) + (c.x− d.y), (a.y + b.x) + (c.y + d.x))
= (a+ ib) · (x, y) + (c+ id) · (x, y).
Et (a+ ib) · (x1, y1) + (a+ ib) · (x2, y2)
= (a.x1 − b.y1, a.y1 + b.x1) + (a.x2 − b.y2, a.y2 + b.x2)
= (a.x1 − b.y1 + a.x2 − b.y2, a.y1 + b.x1 + a.y2 + b.x2)
= (a.(x1 + x2)− b.(y1 + y2), a.(y1 + y2) + b.(x1 + x2))
= (a+ ib) · (x1 + x2, y1 + y2).

Donc F est bien est un C-espace vectoriel.
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Exo 8 : On sait que C est un R-ev. Montrons que R.ω ⊂ C est bien un ss-R-ev de C.
Non vide car 0C = 0R.ω ∈ R.ω.
Stable par Comb.Lin. Pour u, v ∈ R.ω et λ ∈ R.
On peut écrire u = x.ω et v = y.ω pour x, y ∈ R.
Donc u+ λv = (x+ λy).ω ∈ R.ω.
Pour que R.ω soit un C-espace vectoriel il faut i.ω ∈ R.ω uniquement possible ssi ω = 0.
Donc R.ω = {0} est le seul C-ev sous-espace strict de C.

14.2 Espaces supplémentaires

Indications :

Pour montrer que E = F1 ⊕ F2, on peut montrer par définition que tout vecteur u ∈ E se
décompose de manière unique en somme deux vecteurs u = u1+u2 avec u1 ∈ F1 et u2 ∈ F2.
Dans la pratique, on décompose plutôt le raisonnement en deux étapes en montrant que

F1 ∩ F2 = {0E} et F1 + F2 = E .

Dans tous les cas, il faut commencer par démontrer que F1 et F2 sont des sous-espaces
vectoriels de E comme dans les exercices précédents.

Exo 9 : Sous-espaces : D est un espace vectoriel en tant qu’espace engendré.

On a P =
{(

y−z
y
z

)
pour y, z ∈ R

}
= Vect R

[(
1
1
0

)
,
(−1

0
1

)]
est un espace vectoriel en tant

qu’espace engendré.

P ∩D ⊂ {03} : Soit u ∈ P ∩D. On a u = λ
(

1
2
2

)
=

(
λ
2λ
2λ

)
car u ∈ D. Puis λ− 2λ+ 2λ = 0

car u ∈ P . Ainsi λ = 0 puis u = 03 est le vecteur nul.

P +D ⊃ R3 : Soit u =
(

a
b
c

)
∈ R3.

On recherche λ ∈ R tel que u− λ
(

1
2
2

)
∈ P .

On trouve l’équation (a− λ)− (b− 2λ) + (c− 2λ) = 0 ⇔ λ = a− b+ c.

Donc u = (u− λ
(

1
2
2

)
) + λ

(
1
2
2

)
∈ P +D.

Ainsi P ⊕D = R3 i.e. ils sont supplémentaires dans R3.

Exo 10 : Sous-espaces : L’espace G est un espace vectoriel de référence.

L’espace F est un sous-espace de R[X].
Non vide Le polynôme nul s’annule en 1 et 2 donc 0 ∈ F .
Stable par Comb.Lin. Pour P1, P2 ∈ F et λ ∈ R alors (P1 + λP2)(1) = P1(1) + λP2(1) = 0
et (P1 + λP2)(2) = P1(2) + λP2(2) = 0. Donc P1 + λP2 ∈ F .

F ∩G ⊂ {0} : Soit P (X) ∈ F ∩G. On a P (X) = (X − 1)(X − 2)Q(X) avec Q(X) ∈ R[X]
car (X − 1) et (X − 2) divise P et sont premiers entre eux. Puis deg(P ) = 2 + degQ ≤ 1
impose Q(X) = 0. Donc P (X) = 0.

F +G ⊃ R[X] : Pour P (X) ∈ R[X], on peut faire la division euclidienne de P (X) par

(X − 1)(X − 2) = X2 − 3X + 2.
On obtient P (X) = (X2 − 3X + 2)Q(X) +R(X) avec deg(R) < 2.

Ainsi P (X) ∈ F +G car (X2 − 3X + 2)Q(X) ∈ F et R(X) ∈ G.

Donc F ⊕G = R[X] i.e. ils sont supplémentaires dans R[X].

Exo 11 : Sous-espaces : On montre que F et G sont des sous-espaces vectoriels de C1(R,R).
Non vide La fonction nulle est bien dans F .
Stable par Comb.Lin. Pour f1, f2 ∈ F et λ ∈ R, on note f = f1 + λf2.
On a : f(0) = f1(0) + λf2(0) = 0 et f ′(0) = f ′

1(0) + λf ′
2(0) = 0. Donc f ∈ F .

Puis G = Vect R(x 7→ 1, x 7→ x) est un espace engendré.

F ∩G ⊂ {0} : Soit f ∈ F ∩G.
On sait qu’ils existent a, b ∈ R tel que f(t) = at+ b car f ∈ G.
Puis 0 = f(0) = b et 0 = f ′(0) = a car f ∈ F . Donc f est bien la fonction nulle.
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14.3 Famille de vecteurs

F +G ⊃ C1(R,R) : Soit h ∈ C1(R,R).
On pose a = h′(0) et b = h(0) puis f(t) = h(t)− at− b et g(t) = at+ b.
On a bien g ∈ G puis f(0) = b−b = 0 = a−a = f ′(0) d’où f ∈ F . Ainsi h = f+g ∈ F +G.

Conclusion : On a ainsi démontrer que C1(R,R) = F ⊕G.

Exo 12 : Sous-espaces : D = Vect R(u) est bien un espace vectoriel en tant qu’espace engendré.

Non vide Le vecteur nul est bien dans H par la condition 0 + ...+ 0 = 0.
Stable par Comb.Lin. Soit x = (x1, ..., xn) et y = (y1, .., yn) ∈ H et λ ∈ R, on note :
z = x+ λy = (x1 + λy1, ..., xn + λyn)
On a

∑n
i=1(xi + λyi) =

∑n
i=1 xi + λ

∑n
i=1 yi = 0 i.e. z ∈ H,

car x ∈ H donc
∑n

i=1 xi = 0 et de même y ∈ H donc
∑n

i=1 yi = 0.

H ∩D ⊂ {0Rn} : Soit x ∈ H ∩ D. Il existe λ ∈ R tel que x = λu = (λ, ..., λ) car x ∈ D.
Puis x ∈ H donc λ+ ...+ λ = 0 d’où λ = 0 puis x = 0Ru = 0Rn .

Rn ⊂ H +D : Soit x ∈ Rn. On recherche h = (h1, ..., hn) ∈ H et d = (λ, ..., λ) ∈ D tel
que x = h + d. Par analyse-synthèse, il faut xi = hi + λ et

∑n
i=1 hi = 0. Donc

∑n
i=1 xi =∑n

i=1(hi + λ) = 0 + nλ.
On pose λ = 1

n

∑n
i=1 xi et h = (h1 − λ, ..., hn − λ). On a bien x = h+ d ∈ H +D.

Conclusion : Rn = H ⊕D.

Exo 13 : 1) On démontre que Vect (A ∪B) = Vect (A) + Vect (B) en passant aux éléments.
Soit u ∈ E. On a :

u ∈Vect (A) + Vect (B)

⇔ ∃uA ∈ Vect (A), uB ∈ Vect (B), u = uA + uB

⇔ ∃(λa)a∈A ∈ RA, (µb)b∈B ∈ RB , u =
∑
a∈A

λaa+
∑
b∈B

µbb

⇔ ∃(αv)v∈A∪B ∈ RA∪B , u =
∑

v∈A∪B

αvv en posant αv =

{
λv si v ∈ A

µv si v ∈ B

⇔ u ∈ Vect (A ∪B).

2) On a Vect (A ∩ B) ⊂ Vect (A) ∩ Vect (B). En passant aux éléments, on considère u ∈
Vect (A ∩ B) donc u =

∑n
i=1 λixi pour xi ∈ A ∩ B. Mais en particulier xi ∈ A donc

u ∈ Vect (A) et de même xi ∈ B donc u ∈ Vect (B).
Ainsi u ∈ Vect (A) ∩Vect (B).

L’inclusion réciproque est fausse. Par exemple si A = {u} et B = {−u} alors A ∩ B = ∅
donc Vect (A ∩B) = {0E} et Vect (A) ∩Vect (B) = Vect (u).

Remarque : Vect (∅) = {0E} car la somme vide
∑

a∈∅ a = 0E est l’élément neutre.

Exo 14 : L’hypothèse de l’énoncé s’écrit G = (F ∩G)⊕H.

F ∩H ⊂ {0E} : Soit u ∈ F ∩H alors u ∈ H ⊂ G donc u ∈ F ∩G.
Ainsi u ∈ (F ∩G) ∩H = {0E} car F ∩G et H sont en somme directe.

F +G ⊂ F +H : Soit u = uF + uG ∈ F +G. On a uG ∈ G = (F ∩G)⊕H.
Donc uG = u0 + uH avec u0 ∈ F ∩H et uH ∈ H.
Puis u = uF + u0 + uH ∈ F +H car (uF + u0) ∈ F et uH ∈ H.

Ainsi F +G = F ⊕H.

14.3 Famille de vecteurs

Exo 15 : On recherche l’existence de λ1, λ2 ∈ R tel que u = λ1x+ λ2y.

On obtient le système d’équation


λ1 = 1

−λ1 + λ2 = 1

λ1 + aλ2 = 2

⇔


λ1 = 1

λ2 = 2

aλ2 = 1

. Ce système est compa-

tible ssi a = 1
2 et dans ce cas l’unique solution est u = x+ 2y.
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Les vecteurs sont alors coplanaires mais deux à deux non colinéaires. Les espaces valent
tous P = Vect (x, y, u).
On a Vect (x, y) = Vect (x, y, x+ 2y) = P .
Puis Vect (x, u) = Vect

(
x, u, 1

2 (u− x)
)
= P .

Et Vect (y, u) = Vect (y, u, u− 2y) = P .

Exo 16 : a) Les vecteurs sont non colinéaires donc ils forment une famille libre.

b) Soient λ1, λ2, λ3 ∈ R tel que λ1x1 + λ2x2 + λ3x3 = 0.

On a


λ1 + λ2 + λ3 = 0

λ2 + λ3 = 0

λ3 = 0

.

C’est un système homogène, échelonné et de rang 3. Donc il admet une unique solution
λ1 = λ2 = λ3 = 0. Par définition la famille est libre.

c) On observe x1 + x3 = x2 donc la famille est liée par la relation x1 − x2 + x3 = 0.

d) On observe que x1 = −x3 ces deux vecteurs sont colinéaires. Donc la famille est liée par
la relation x1 + 0x2 + x3 = 0.

Exo 17 : Soient λ1, λ2, λ3, λ4 ∈ R tel que
∑4

i=1 λifi = 0 la fct nulle.
Donc pour tout t ∈ R, λ1 cos t+ λ2t cos t+ λ3 sin t+ λ4t sin t = 0.
Donc on peut en déduire un système de 4 équations pour des valeurs particulières t :
λ1 = 0 (t = 0)

λ1 + 2πλ2 = 0 (t = 2π)

λ3 +
π
2λ4 = 0 (t = π/2)

−λ3 +
π
2λ4 = 0 (t = −π/2)

On trouve donc λ1 = λ2 = λ3 = λ4 = 0 et donc la famille est libre.

Exo 18 : On démontre par l’absurde que la famille est libre. Sinon ils existent des coefficients
λ0, ..., λn non tous nuls tels que

∑n
i=0 λifi = 0. Puis on note i0 le plus grand des indices

tels que λi0 ̸= 0. On en déduit λi0fi0 = −
∑i0−1

i=0 λifi.

Or pour t ∈ R, on en déduit λi0e
i0t = −

∑i0−1
i=0 λie

it =t→+∞ o(ei0t) car i < i0 donc
eit =t→+∞ o(ei0t). On obtient λi0e

i0t =t→+∞ o(ei0t) ce qui est absurde. Donc la famille
n’est pas liée, elle est donc libre.

Remarque : Ceci démontre l’existence d’autant de directions que possible dans F(R,R).
C’est donc un espace de dimension infinie.

Exo 19 : Attention : Il est FAUX de penser que R[X] est un sous-espace de F(R,R). On ne peut
donc pas utiliser le caractère échelonné des polynômes.

On peut par contre adapter la démonstration de l’exercice précédent en utilisant la com-

paraison : xa =x→0 o(xb) ⇔ a > b .

Par l’absurde, on considère une relation de liaison
∑n

i=0 λifi = 0 avec λ0, ..., λn non tous
nuls. On note p le plus petit indice tel que λp ̸= 0 (i.e. la valuation) alors pour x ∈
R,

∑n
i=0 λifi(x) ∼x→0 λpx

p. On obtient 0 ∼x→0 λpx
p ce qui est absurde.
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