14.1 Sous-espace vectoriel

TD 14 - Corrige

14.1 Sous-espace vectoriel
Indications :
Pour démontrer que F' est un sous-espace vectoriel de F/, on dispose de plusieurs méthodes :
1. On montre qu’il est non vide et stable par combinaison linéaire.
2. On montre que c’est un espace engendré F' = Vect (eq, ..., €p).
3. On montre que c’est le noyau ou 'image d’une application linéaire (c.f. Chapitre 16)
Exo 1 : Méthode 1 : On montre que F' est un sous-espace vectoriel de RY.

Non vide La suite nulle vérifie 0 = 12.0 — 36.0 donc F' est non vide.

Stable par Comb.Lin. Pour (uy,)n>0, (Vn)n>0 € F et A € R.
La suite w,, = u,, + Av,, vérifie :

Wpy2 = Un42 + ANVpio

= 12un+1 — 36un + )\(127)11—0—1 — 36?)11)

= 12(up11 + Avpg1) — 36(upn + Avy,)

= 12wp4+1 — 36wy,.

Donc (wy,)n>0 € F et F est stable par combinaison linéaire.

Méthode 2 : On montre que F' est un espace engendré.

Soit (un)n>0 € F. Cest une suite récurrente linéaire d’ordre 2.

Le polynome caractéristique est X2 — 12X 4 36 = (X — 6)2.

Donc u, = (An + A2)6™ = Ara, + A2b, en posant a,, = n6"™ et b, = 6™.
Ainsi F = Vect g [(an)n>0, (bn)n>0]-

Exo 2 : Méthode 1 : On montre que F est un sous-espace vectoriel de C%(R, R).
Non vide La fonction nulle vérifie 0” + 4.0’ + 5.0 = 0 donc F est non vide.
Stable par Comb.Lin. Pour y1,y2 € F et A € R.

La fonction y = y; + Ay» est de classe C? sur R et vérifie :
v =yl + Ay

= —4yy — 5y1 + A(—4ys — 5y2)

= —4(y; + Ayz) — 5(y1 + Ay2)

= —4y -5y

Donc y € F et F est stable par combinaison linéaire.

Méthode 2 : On montre que I’ est un espace engendré.
Soit y € F. C’est une équation différentielle linéaire d’ordre 2 a coefficients constants.
Le polynéme caractéristique est X2 +4X +5 = (X +2)% + 12
On pose y1(t) = e 2t cost et yo(t) = e 2! sint les solutions homogenes génératrices.
Donc y = A\y1 + A2ys puis F = Vect g (y1,y2)-

Exo 3 : Non vide La matrice nulle vérifie A0 = 0 = 0A. Donc E est non vide.
Stable par Comb.Lin. Pour My, Ms € E et A € R, on pose M = M; + AMs.
Ona AM = A(My + AMs) = AMy + MAMs = M1 A+ AMA = (M + AM2)A = M A.
Donc M € E et E est stable par combinaison linéaire.

Ainsi E est un R-ev en tant que sous-espace vectoriel de M, (R).

Exo4: a) Noncar fj:z+ xet fo:x+— 23 sont croissantes donc monotone mais f = fo — fi
n’est pas monotone car sa dérivée f’(z) = 322 — 1 change de signe.
b) Oui car on peut vérifier les deux conditions :
Non vide : La fonction nulle s’annule en 0.
Stable par Comb.Lin. : Pour deux fonctions f; et fo qui s’annule en 0 et A € R.
On a (f1 + Af2)(0) = f1(0) + Af2(0) = 0.

Ainsi la combinaison linéaire s’annule bien en 0.
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c) Noncar f1 : . — 2% et fo : @ — (z + 1)? s’annulent (en 0 et en 1 respectivement)
pourtant fi + fo ne s’annule pas sur R.
d) Oui car on peut vérifier les deux conditions :
Non vide : La fonction nulle est impaire.
Stable par Comb.Lin. : Soit fi et fy impaires et A € R, on étudie g = f1 + A fs.
Pour t € R, on a g(—t) = fi(=t) + AMf2(=t) = —[1(t) = Afa(t) = —g(D).

Ainsi la combinaison linéaire g est une fonction impaire.

Exo 5 : Non vide La partie A est non-vide car la fonction nulle s’écrit 0 = f — f pour f € C.
Stable par Comb.Lin. Pour hy, hy € A, ils existent f1, g1, f2, g2 € C telles que hy = f1 — ¢1
et ho = fo — g2. Soit A € R un scalaire.
lercas : A>0:0nahy + Ahe = (fi + Af2) — (g1 + Ag2) € A
car f1 + Afa et g1 + Ago sont des fonctions croissantes.
2eme cas : A< 0:O0nahy +Aa=(f1 —Ag2) — (1 — Af2) €A
car f1 + (—A)ga et g1 + (=) f2 sont des fonctions croissantes.

Dans tous les cas, hq + Ahy € A.
Donc A est un sous-espace vectoriel de E.

Exo 6 : On raisonne par double implication.
(<) On suppose par I'absurde que F'U G est un espace vectoriel, que F' n’est pas inclus
dans G et que G n’est pas inclus dans F. Donc ils existent up € F'\ G et ug € G\ F.
On a alors up,ug € (FUG) donc s = up + ug € (FUG) car (F UQG) est stable par
Comb.Lin.
ler cas : s € F alors ug = s—up € F car F est stable par Comb.Lin. Absurde car ug ¢ F.
2eme cas : § € G de méme up = s — ug € G car G stable par Comb.Lin. Absurde car
(5 ¢ G.
(=) On suppose que F' C G ou que G C F.
ler cas : F C G alors FUG = G est espace vectoriel par hypothese.
2eme cas : G C F alors de méme F'U G = F est espace vectoriel.

Exo 7 : On doit montrer que F' = E x E est un C-ev par définition.
On note 0 = (0,0) ’élément neutre et les regles sur 'addition sur les reégles usuelles.
Pour le produit externe, on a :
éléments neutres O¢ - (z,y) = (0,0) = 0p
et 1c - (z,y) = (.o — 0.y, L.y + 0.2) = (x,y).
associatif (a + ib) - [(c + id) - (z,y)]
= (a+1b) - (c.x —d.y,cy + d.x)
= (a.(c.x —d.y) = b.(cy + d.x),a.(cy+d.x) + b.(cx — dy))
= ((ac — bd).x — (ad + be).y, (ac — bd).y + (ad + be).x)
= ((ac — bd) + i(ad — bc)) - (z,y).
On retrouve bien I'associativité car (a + ib)(c + id) = (ac — bd) + i(ad — be).
double distributif ((a 4 ib) + (¢ + id)) - (z,y)
=((a+c)z—(b+d)y,(a+c)y+ (b+d).x)
= ((a.x — b.y) + (c.x — d.y), (a.y + b.x) + (cy + d.x))
Et (a + ) - (z1,y1) + (a +1ib) - (22,92)
= (a.x1 —by1,a.y1 + b.x1) + (a.22 — b.ys, a.ys + b.xa)

(a.x1 —byr + a.x2 — by, a.y1 + b.x1 + a.yz + b.xa)

= (a.(z1 +22) = b.(y1 + ¥2), a-(y1 + y2) + b.(z1 + 22))

= (a+ib) - (z1 + 72,y1 + y2).

Donc F' est bien est un C-espace vectoriel.
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Exo 8 : On sait que C est un R-ev. Montrons que R.w C C est bien un ss-R-ev de C.
Non vide car Oc = Ogr.w € R.w.
Stable par Comb.Lin. Pour u,v € Rw et A € R.
On peut écrire u = z.w et v = y.w pour x,y € R.
Donc u+ M = (z + \y).w € Rw.
Pour que R.w soit un C-espace vectoriel il faut i.w € R.w uniquement possible ssi w = 0.
Donc R.w = {0} est le seul C-ev sous-espace strict de C.

14.2 Espaces supplémentaires

Indications :

Pour montrer que E = F; @ F5, on peut montrer par définition que tout vecteur u € E se
décompose de maniere unique en somme deux vecteurs u = u1 +us avec uy € Fi et ug € Fh.
Dans la pratique, on décompose plutot le raisonnement en deux étapes en montrant que
’Fl ﬂng{OE}‘et L+ F,=F|

Dans tous les cas, il faut commencer par démontrer que F; et Fy sont des sous-espaces
vectoriels de E' comme dans les exercices précédents.

Exo 9 : Sous-espaces : D est un espace vectoriel en tant qu’espace engendré.

OnaP = {(yf) pour y, z € R} = Vect g [(é) , (_(1)1 )} est un espace vectoriel en tant
qu’espace engendré.
PnND c {03} :Soit wue PND. Onau:/\(%) = (%Aﬁ) car u € D. Puis A\ =2\ +2\ =0

2
car u € P. Ainsi A = 0 puis u = 03 est le vecteur nul.

P+DOR®: Soit u= (1) € R®.

On recherche A € R tel que u — A (%) e P.

On trouve I'équation (a —A) = (b—2X)+ (c—2\)=0& A A=a—-b+ec
Donc u = (u—A(é))—i—)\(é) e P+ D.

Ainsi P ® D = R3 i.e. ils sont supplémentaires dans R3.

Exo 10 : Sous-espaces : L’espace GG est un espace vectoriel de référence.
L’espace F est un sous-espace de R[X].
Non vide Le polynéme nul s’annule en 1 et 2 donc 0 € F.
Stable par Comb.Lin. Pour P;, P, € F et A € R alors (P + AP2)(1) = Pi(1) + AP2(1) =0
et (Pl + /\Pg)(?) = P1(2) + /\PQ(Q) =0. Donc P, + AP, € F.
FNGc{0}:Soit P(X) € FNG.Ona P(X) = (X —1)(X —2)Q(X) avec Q(X) € R[X]
car (X — 1) et (X — 2) divise P et sont premiers entre eux. Puis deg(P) =2+ deg@ < 1
impose Q(X) = 0. Donc P(X) = 0.
F +G DR[X] : Pour P(X) € R[X], on peut faire la division euclidienne de P(X) par
(X —1)(X —2)=X2-3X +2.
On obtient P(X) = (X% —3X +2)Q(X) + R(X) avec deg(R) < 2.
Ainsi P(X) € F+ G car (X2 -3X +2)Q(X) € F et R(X) € G.
Donc F @ G = R[X] i.e. ils sont supplémentaires dans R[X].

Exo 11 : Sous-espaces : On montre que F et G sont des sous-espaces vectoriels de C!(R, R).
Non vide La fonction nulle est bien dans F'.
Stable par Comb.Lin. Pour fi, fo € F et A € R, on note f = f1 + Afa.
Ona: f(0) = f1(0) + Af2(0) =0 et f'(0) = f1(0) + Af5(0) =0. Donc f € F.
Puis G = Vectg(z — 1,z — z) est un espace engendré.
FNGc{0}:Soit fe FNG.
On sait qu’ils existent a,b € R tel que f(t) =at+ b car f € G.
Puis 0 = f(0) =bet 0= f'(0) =a car f € F. Donc f est bien la fonction nulle.
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F+G D CHR,R) : Soit h € C*(R,R).

On pose a = h'(0) et b = h(0) puis f(t) = h(t) — at — b et g(t) = at + b.

On abien g € Gpuis f(0) =b—b=0=a—a= f'(0)dou f € F. Ainsih= f+g € F+G.
Conclusion : On a ainsi démontrer que C!(R,R) = F & G.

Exo 12 : Sous-espaces : D = Vect g(u) est bien un espace vectoriel en tant qu’espace engendré.
Non vide Le vecteur nul est bien dans H par la condition 0 + ... + 0 = 0.
Stable par Comb.Lin. Soit = = (x1,...,2,) et y = (y1,.,9n) € H et A € R, on note :
z=x+ Ay = (x1+ Ay1, oo, Tn + Ayn)
Onad ! (zi+Ay)=> i+ A> 0y =01ie z€H,
car x € H donc Y., x; =0 et de méme y € H donc Y ., y; = 0.
HND C {0gn} : Soit z € HN D. Il existe A € R tel que x = Au = (A, ..., A) car z € D.
Puis x € H donc A+ ...+ A =0 d’ou A = 0 puis = Oru = Ogn.
R™ C H+ D : Soit « € R™. On recherche h = (hy,....,h,) € H et d = (A,..., ) € D tel
que x = h + d. Par analyse-synthese, il faut ; = h; + A et Y. h; = 0. Donc Y | x; =
Soiii(hi +A) =0+nA.
Onpose A\ =13"  x; et h=(hy—A,....h, —A). Onabien z =h+d € H+ D.
Conclusion : R" = H ¢ D.

Exo 13 : 1) On démontre que Vect (AU B) = Vect (A) 4+ Vect (B) en passant aux éléments.
Soit u € E. On a :

u €Vect (A) + Vect (B)
< Juy € Vect (A),up € Vect (B),u =us +up

< I(Aa)aca € RAv (Lo )veB € RBaU = Z Aga + Z b
acA beB

A siveA

< F(ay)veaun € RAYE 4 = Z Qu,v  en posant a, = )
Uy siv e B

vEAUB
< u € Vect (AU B).

2) On a Vect (AN B) C Vect (A) N Vect (B). En passant aux éléments, on considére u €
Vect (AN B) donc u = Z?:l Aixz; pour z; € AN B. Mais en particulier ; € A donc
u € Vect (A) et de méme z; € B donc u € Vect (B).

Ainsi u € Vect (A) N Vect (B).

L’inclusion réciproque est fausse. Par exemple si A = {u} et B = {—u} alors ANB = {
donc Vect (AN B) = {0g} et Vect (A) N Vect (B) = Vect (u).

Remarque : ’Vect (0) ={0g} ‘ car la somme vide ) ., a = Op est I'élément neutre.

Exo 14 : L’hypothese de I’énoncé s'écrit G = (FNG) @ H.
FNHC{0g}:Soitwue FNH alors u € HC G donc u € FNG.
Ainsiu € (FNG)NH ={0g} car FNG et H sont en somme directe.
F+GCF+H:Soitu=up+ug € F+G.Onaug e G=(FNG)d H.
Donc ug = ug +uy avec ug € FNH et ug € H.
Puisu=up +ug+uyg € F+ H car (up +up) € Fetuyg € H.
Ainsi F+G=F® H.

14.3 Famille de vecteurs

Exo 15 : On recherche lexistence de A1, A2 € R tel que u = Az + Aay.
A1 =1 A =1
On obtient le systeme d’équation ¢ —A\; +Xy =1 < ¢ Ay = 2. Ce systéme est compa-
Al +ary =2 ary =1
tible ssi a = % et dans ce cas I'unique solution est u = = + 2y.
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Les vecteurs sont alors coplanaires mais deux a deux non colinéaires. Les espaces valent
tous P = Vect (z,y, u).
On a Vect (z,y) = Vect (x,y,z + 2y) = P.
Puis Vect (z,u) = Vect (z,u, 3(u—z)) = P.
Et Vect (y,u) = Vect (y, u,u — 2y) = P.
Exo 16 : a) Les vecteurs sont non colinéaires donc ils forment une famille libre.
b) Soient A1, A2, A3 € R tel que A1 + Aaxs + Azzs = 0.
)\1 + )\2 + )\3 =0
Ona< A+ A3 =0.
A3 =0
C’est un systeme homogene, échelonné et de rang 3. Donc il admet une unique solution
A1 = A2 = A3 = 0. Par définition la famille est libre.
¢) On observe x1 + x3 = x2 donc la famille est liée par la relation 1 — x5 + 23 = 0.
d) On observe que 1 = —x3 ces deux vecteurs sont colinéaires. Donc la famille est liée par
la relation 7 + 0z + 23 = 0.

Exo 17 : Soient A1, Aa, A3, A4 € R tel que 2?21 Aifi = 0 la fct nulle.
Donc pour tout t € R, Ay cost + Mgt cost + Azsint + Agtsint = 0.
Donc on peut en déduire un systeme de 4 équations pour des valeurs particulieres ¢ :

A1 =0 (t=0)
AM4+2rA =0 (t=2m)
M+IN =0 (t=7/2)
—)\3+%)\4 =0 (tZ —7T/2)

On trouve donc A\{ = A\g = A3 = Ay = 0 et donc la famille est libre.

Exo 18 : On démontre par 'absurde que la famille est libre. Sinon ils existent des coefficients
A0, .-+ Ap, nON tous nuls tels que Z?:O Aifi = 0. Puis on note i le plus grand des indices
tels que \;, # 0. On en déduit \;, f;, = — Zi(’:BI Xifi.

Or pour t € R, on en déduit \; et = —220:61 Nt =, 1o ofe®t) car i < iy donc
e =i 1o 0(e™!). On obtient \; e™! =, o(e™?!) ce qui est absurde. Donc la famille
n’est pas liée, elle est donc libre.

Remarque : Ceci démontre 'existence d’autant de directions que possible dans F(R,R).
C’est donc un espace de dimension infinie.

Exo 19 : Attention : Il est FAUX de penser que R[X] est un sous-espace de F(R,RR). On ne peut
donc pas utiliser le caractere échelonné des polynomes.

On peut par contre adapter la démonstration de 'exercice précédent en utilisant la com-

paraison : ’x“ =s500(x%) & a>b ‘

Par ’absurde, on considére une relation de liaison Z?:o Aifi = 0 avec Ay, ..., Ay, non tous
nuls. On note p le plus petit indice tel que A\, # 0 (i.e. la valuation) alors pour €
R, Z?:o Aifi(x) ~z0 ApaP. On obtient 0 ~;_o Apa? ce qui est absurde.
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