
15.1 Famille de vecteurs

TD 15-Corrigé : Espace vectoriel de dimension finie

15.1 Famille de vecteurs

Indications :
Pour déterminer la nature d’une famille de vecteurs en dimension finie, il suffit de déterminer

son rang. Il se calcul avec l’algorithme du Pivot de Gauss-Jordan sur la matrice des coordonnées.
On utilise ensuite les caractérisations suivante :

F est libre ssi rgF = CardF et F est génératrice de E ssi rgF = dimE

Exo 1 : a) On calcul le rang de ces familles :

rg(v1, v2) = rg

1 4
1 1
0 4

 = 2 donc la famille est libre.

rg(v2, v3) = rg

4 2
1 −1
4 4

 = rg

1 −1
0 6
0 8

 = 2 donc la famille est libre.

rg(v1, v3) = rg

1 2
1 −1
0 4

 = 2 donc la famille est libre.

b) De même rg(v1, v2, v3) = rg

1 4 2
1 1 −1
0 4 4

 = rg

1 1 −1
0 3 3
0 4 4

 = rg

1 1 −1
0 1 1
0 0 0

 = 2.

Donc les vecteurs sont coplanaires et la famille est liée.

Exo 2 : On peut calculer le rang dans chacun des cas :

a) On a rg (( 35 ) , (
1
1 ) , (

2
3 )) = rg

(
3 1 2
5 1 3

)
= 2.

La famille est génératrice de R2 mais n’est pas libre.

b) rg
((

2
1
0

)
,
(

0
2
1

)
,
(

2
0
1

))
= rg

2 0 2
1 2 0
0 1 1

 = rg

1 0 1
0 1 1
0 2 −1

 = rg

1 0 1
0 1 1
0 0 −3

 = 3.

Donc la famille est libre et génératrice de R3 ainsi c’est une base.

c) De même rg
((

1
1
0

)
,
(

1
2
3

))
= 2 est libre mais pas génératrice de R3.

d) Enfin rg (( 35 ) , (
1
1 )) = 2 est libre et génératrice de R2, c’est donc une base.

Exo 3 : On note u1 =

(−1
0
1
2

)
et u2 =

(
0
1
−3
1

)
. Ils sont non colinéaires et donc engendre un plan

que l’on peu noté P = Vect R(u1, u2). Soit v ∈ R4. On a les équivalences suivantes :

Le vecteur v ∈ P ssi les vecteurs u1, u2 et v sont coplanaires ssi rg(u1, u2, v) = 2.

Pour v1 =

(−3
2
−3
8

)
, on a rg(u1, u2, v1) = rg


−1 0 −3
0 1 2
1 −3 −3
2 1 8

 = ... = 2. Donc v1 ∈ P .

Pour v2 =

(−1
3
2
1

)
, on a rg(u1, u2, v2) = rg


−1 0 −1
0 1 3
1 −3 2
2 1 1

 = ... = 3. Donc v2 /∈ P .

Exo 4 : a) On note F1 = Vect

{(
1
1
1
1

)
,

(
1
2
3
4

)
,

(
0
1
1
0

)}
.

N.Provost LMB-PCSI1



15.1 Famille de vecteurs

Sa dimension est dimRF1 = rg


1 1 0
1 2 1
1 3 1
1 4 0

 = rg


1 1 0
0 1 1
0 2 1
0 3 0

 = rg


1 1 0
0 1 1
0 0 −1
0 0 −2

 = 3.

Donc F1 est un espace de dimension 3 engendré par 3 vecteurs

{(
1
1
1
1

)
,

(
1
2
3
4

)
,

(
0
1
1
0

)}
et ils forment donc une base de ce sous-espace.

b) On note F2 = Vect

{(
2
1
3
1

)
,

(
1
2
0
1

)
,

(−1
1
−3
0

)}
.

Sa dimension est dimRF2 = rg


2 1 −1
1 2 1
3 0 −3
1 1 0

 ... = rg


1 1 0
0 1 1
0 0 0
0 0 0

 = 2.

Donc les vecteurs sont liés et

(−1
1
−3
0

)
=

(
1
2
0
1

)
−
(

2
1
3
1

)
.

Ainsi F2 = Vect

{(
2
1
3
1

)
,

(
1
2
0
1

)}
est bien une base de ce sous-espace de dimension 2.

c) On note F3 = Vect

{(
0
1
0
2

)
,

(
5
3
1
2

)
,

(
5
4
1
4

)
,

(
5
2
1
0

)}
.

On remarque que

(
5
3
1
2

)
=

(
5
2
1
0

)
+

(
0
1
0
2

)
et

(
5
4
1
4

)
=

(
5
2
1
0

)
+ 2

(
0
1
0
2

)
.

Ainsi F3 = Vect

{(
0
1
0
2

)
,

(
5
2
1
0

)}
avec des vecteurs non-colinéaires.

Donc F3 admet pour base extraite

{(
0
1
0
2

)
,

(
5
2
1
0

)}
.

Exo 5 : On note B0 = (1, X,X2, X3) la base canonique de R3[X].

On a p1(X) = 1 − 3X + 3X2 − X3 =

(
1
−3
3
−1

)
B0

, p2(X) = X − 2X2 + X3 =

(
0
1
−2
1

)
B0

,

p3(X) = X2 −X3 =

(
0
0
1
−1

)
B0

et p4(X) = X3 =

(
0
0
0
1

)
B0

.

Donc rg(p1, p2, p3, p4) = rg


1 0 0 0
−3 1 0 0
3 −2 1 0
−1 1 −1 1

 = 4 = rg(F) = dim(R3[X])

Par caractérisation, la famille est une base de R3[X] de dimension 4.

Indications : Dans les exemples plus abstraits, on peut revenir à la définition :
(u1, ..., un) est libre ssi ∀(λ1, ..., λn) ∈ Kn,

∑n
k=1 λkuk = 0E ⇒ λ1 = ... = λn = 0K

(u1, ..., un) est génératrice de E ssi ∀v ∈ E,∃(λ1, ..., λn) ∈ Kn, v =
∑n

k=1 λkuk.

Exo 6 : a) Soient λ1, ..., λn ∈ R tel que
∑n

i=1 λiϵi = 0E .

Alors 0E =
∑n

i=1 λi

∑i
j=1 ej =

∑
1≤j≤i≤n λiej =

∑n
j=1

∑n
i=j λiej .

Donc ∀j ∈ J1, nK,
∑n

i=j λi = 0 car (e1, ..., en) est une base de l’espace.

Donc pour tout j ∈ J1, nK, λj =
∑n

i=j λi −
∑n

i=j+1 λi = 0− 0 = 0.
Ainsi λ1 = ... = λn = 0 donc la famille (ϵ1, ...ϵn) est libre.
De plus la famille est composée de n vecteurs identique à la dimension de l’espace.
Donc par caractérisation B′ est une base de E.

b) On a :

(
a1

...
an

)
B

=
∑n

i=1 aiei =
∑n

i=1 ai(ϵi − ϵi−1) en posant ϵ0 = 0E .

Donc

(
a1

...
an

)
B

=
∑n

i=1 aiϵi −
∑n−1

i=1 ai+1ϵi =

 a1−a2
a2−a3

...
an


B′

.
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15.2 Sous-espace vectoriel

Exo 7 : Pour simplifier, on ajoute la notation en+1 = e1.
On a u =

∑n
k=1(−1)kwk =

∑n
k=1(−1)k(ek + ek+1)

=
∑n

k=1(−1)kek +
∑n+1

k=2(−1)k−1ek par changement d’indices dans la 2nd somme.

=
∑n

k=1(−1)kek −
∑n+1

k=2(−1)kek = (−1)e1 − (−1)n+1en+1 par relation de Chasles.
= [−1 + (−1)n]e1 car en+1 = e1.

Ainsi u =

{
−2e1 si n est impair

0 si n est pair

Si n est pair, on a trouvé
∑n

k=1(−1)kwk = u = 0E une relation de liaison de la famille. Ce
n’est pas une base car elle n’est pas libre.

Si n est impair, on note F = Vect (w1, ..., wn). On a e1 = −1
2 u ∈ F par le calcul précédent.

Puis e2 = w1 − e1 ∈ F car F est stable par opérations.
On démontre ainsi par récurrence immédiate que ek+1 = wk − ek ∈ F pour tout 1 ≤ k ≤ n.
Donc E = Vect (e1, ..., en) ⊂ F permet de démontrer que E = F = Vect (w1, ..., wn).
Ceci montre que la famille est génératrice de E et elle est constituée de n vecteurs, par
caractérisation, c’est une base de E.

Exo 8 : a) Soient λ1, .., λn+1 ∈ K tels que
∑n+1

i=1 λiui = 0E .
Alors

∑n
i=1 λiui = −λn+1un+1.

Donc λn+1 = 0 car sinon un+1 = −1
λn+1

∑n
i=1 λiui ∈ Vect (u1, ..., un) Absurde.

Puis
∑n

i=1 λiui = 0E donne λ1 = ... = λn = 0 car la famille est libre.
Ainsi λ1 = ... = λn = λn+1 = 0 donc (u1, ..., un, un+1) est une famille libre.

b) On écrit un+1 =
∑n

i=1 µiui. Soit v ∈ E.
La famille (u1, ..., un, un+1) est génératrice donc ils existent des scalaires tels que :

v =
∑n+1

i=0 λiui =
∑n

i=1 λiui + λn+1un+1

=
∑n

i=1 λiui + λn+1

∑n
i=1 µiui =

∑n
i=1(λi + λn+1µi)ui ∈ Vect (u1, ..., un).

Ainsi la famille (u1, ..., un) est bien une famille génératrice.

15.2 Sous-espace vectoriel

Indications : En dimension finie, tous les sous-espaces vectoriels peuvent s’écrient F =
VectF .

Exo 9 : a) On a F = {
(

x
y
z

)
∈ R3 tel que y = 2x et z = −3x}

= {
(

x
2x
−3x

)
pour x ∈ R} = Vect R

(
1
2
−3

)
. Donc F est bien un espace vectoriel.

b) On a 0R2 = ( 00 ) /∈ G donc G n’est pas un espace vectoriel.

c) On a u1 =
(

0
1
0

)
et u2 =

(
1
0
0

)
deux vecteurs de H mais u1 + u2 =

(
1
1
0

)
/∈ H.

Donc H n’est pas un espace vectoriel.

d) On a u =
(−1

0

)
∈ I mais −u /∈ I donc I n’est pas un espace vectoriel.

e) On a J = {u ( 11 ) + v
(

1
−1

)
pour u, v ∈ R} = Vect R

(
( 11 ) ,

(
1
−1

))
= R2.

Donc J est un espace vectoriel.

Exo 10 : a) On a :A =
{(

x
y
z

)
∈ R3, x+ y + z = 0

}
=
{(−y−z

y
z

)
pour y, z ∈ R

}
= Vect R

((−1
1
0

)
,
(

0
−1
1

))
.

AinsiA est un ss-R-ev de dimension 2 (un plan vectoriel) avec pour base :
((−1

1
0

)
,
(

0
−1
1

))
.

b) On résout le système

{
x+ y + z = 0

x+ 2y + 3z = 0
⇔

{
x+ y + z = 0

y + 2z = 0
échelonné homogène de

rang 2.

Donc B =
{(

z
−2z
z

)
pour z ∈ R

}
= Vect

(
1
−2
1

)
.

Donc B est un ss-R-ev de dimension 1 (une droite vectorielle) avec pour base (
(

1
−2
1

)
).
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15.2 Sous-espace vectoriel

Exo 11 : a) L’appartenanceA ∈ E se traduit par S(A) =
∑n

i=1 ai,j0 =
∑n

j=1 ai0,j =
∑n

i=1 ai,i =∑n
i=1 ai,n+1−i pour tout i0, j0 ∈ J1, nK et S(A) ∈ R la valeur de la somme.

Non vide : La matrice nulle appartient à E avec la somme S(0) = 0.

Stable par combinaison linéaire : Soit A,B ∈ E et λ ∈ R.
Pour une ligne i0 ∈ J1, nK, on a :∑n

j=1[A+ λB]i0,j =
∑n

j=1[A]i0,j + λ
∑n

j=1[B]i0,j = S(A) + λS(B).
Pour une colonne j0 ∈ J1, nK, on a :∑n

i=1[A+ λB]i,j0 =
∑n

i=1[A]i,j0 + λ
∑n

i=1[B]i,j0 = S(A) + λS(B).
Pour la 1er diagonale, on a :∑n

i=1[A+ λB]i,i =
∑n

i=1[A]i,i + λ
∑n

i=1[B]i,i = S(A) + λS(B).
Pour la 2eme diagonale, on a :∑n

i=1[A+ λB]i,n+1−i =
∑n

i=1[A]i,n+1−i + λ
∑n

i=1[B]i,n+1−i = S(A) + λS(B).
Donc A+ λB ∈ E avec pour somme S(A+ λB) = S(A) + λS(B).

b) On a N = {A ∈ E tel que S(A) = 0} = KerS donc c’est un sous-espace de E . On note
J = (1). On a J ∈ E et C = Vect RJ est un ss-ev de E .
Puis on a S(J) = n. Donc pour A ∈ N ∩ C, on a A = λJ puis 0 = S(A) = λn et ainsi
λ = 0. Donc N et C sont en somme directe.
Puis pour A ∈ E , on pose λ = S(A)

n . On a A = (A− λJ)+λJ ∈ N +C car S(A−λJ) =
S(A)− λn = 0.
Donc E = N ⊕ C.

c) Pour N ∈ N , on remarque que NT ∈ N . On pose S = 1
2 (N+NT ) et A = 1

2 (N−NT ).
On a S symétrique et A antisymétrique étant l’unique décomposition sur Mn(R). Puis
S ∈ N et A ∈ N car N est stable par combinaison linéaire. Donc M = S + A est
l’unique décomposition sur N = S ⊕A.

d) On a C = Vect RJ ,

A =


 0 a b
−a 0 c
−b −c 0

 tel que 0 = a+ b = −a+ c = −b− c

= Vect R

 0 1 −1
−1 0 1
1 −1 0

.

S =


 a b −a− b

b c −b− c
−a− b −b− c a+ 2b+ c

 tel que

{
2a+ 2b+ 2c = 0

−2a− 2b+ c = 0

= Vect R

 1 −1 0
−1 0 1
0 1 −1

.

Puis E = C ⊕ S ⊕A = Vect R


1 1 1
1 1 1
1 1 1

 ,

 1 −1 0
−1 0 1
0 1 −1

 ,

 0 1 −1
−1 0 1
1 −1 0


=


 a+ b a− b+ c a− c
a− b− c a a+ b+ c
a+ c a+ b− c a− b

 pour a, b, c ∈ R

.

Indications : La formule de Grassmann permet de calculer efficacement certaines dimen-
sions :

dim(F1 + F2) = dimF1 + dimF2 − dim(F1 ∩ F2)

Exo 12 : On commence par considérer une base de B0 = (e1, ..., ep) de F1 ∩ F2 avec p =
dimR(F1 ∩ F2).
Puis on la complète en une base B1 = B0 ∪ F1 = (e1, ..., ep, u1, ..., un−p) de F1 avec
p ≤ n = dimRF1 = dimRF2.
On la complète également en une base B2 = B0 ∪ F2 = (e1, ..., ep, v1, ..., vn−p) de F2.
On pose G0 = Vect R(u1 + v1, ..., un−p + vn−p).
On a F1 +G0 = Vect (e1, ..., ep, u1, ..., un−p, u1 + v1, ..., un−p + vn+p)
= Vect (e1, ..., ep, u1, ..., un−p, v1, ..., vn+p)
= Vect (e1, ..., ep, u1, ..., un−p) + Vect (e1, ..., ep, v1, ..., vn−p) = F1 + F2.
Puis dimR(F1 + G0) = dimR(F1 + F2) = dimR(F1) + dimR(F2) − dimR(F1 ∩ F2) = 2n − p
d’après la formule de Grassmann.
Et dimR(F1 ∩G0) = dimRF1 + dimRG0 − dimR(F +G0)
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15.2 Sous-espace vectoriel

= n+ rg(u1 + v1, ..., un−p + vn−p)− (2n− p) ≤ n+ (n− p)− (2n− p) = 0.
Donc F1 ∩G0 = {0} sont en somme directe avec F1 ⊕G = F1 + F2.

On obtient par symétrie du problème et de la définition de G que F2 ⊕G = F1 + F2.
Enfin on peut considérer un supplémentaire H de F1 +F2 dans E càd H ⊕ (F1 +F2) = E.
Et ainsi on obtient E = (F1+F2)⊕H = Fi⊕G0⊕H pour i = 1 ou 2. Et donc G = G0⊕H
est un supplémentaire commun de F1 et F2 dans E.

Exo 13 : a) On a F1 =

{(−y−z−t
y
z
t

)
pour y, z, t ∈ R

}
= Vect R

{(−1
1
0
0

)
,

(−1
0
1
0

)
,

(−1
0
0
1

)}
.

On a F2 =

{(−y+z+t
y
z
t

)
pour y, z, t ∈ R

}
= Vect R

{(−1
1
0
0

)
,

(
1
0
1
0

)
,

(
1
0
0
1

)}
.

Donc ce sont des espaces vectoriels en tant qu’espace engendré.

b) Puis dimR(F1) = rg

{(−1
1
0
0

)
,

(−1
0
1
0

)
,

(−1
0
0
1

)}
= 3.

Et dimR(F2) = rg

{(−1
1
0
0

)
,

(
1
0
1
0

)
,

(
1
0
0
1

)}
= 3.

Puis

(
1
0
0
1

)
∈ F2 \ F1 donc F1 ⊊ F1 + F2 ⊂ R4

donc 3 = dimRF1 < dimR(F1+F2) ≤ dimRR4 = 4. Ainsi dimR(F1+F2) = 4 et d’après
la formule de Grassmann dimR(F1 ∩ F2) = 3 + 3− 4 = 2.

Exo 14 : On a dimRF = dimR(F +H) + dimR(F ∩H) − dimRH = dimR(G +H) + dimR(G ∩
H)− dimRH = dimRG. De plus, on a F ⊂ G donc ce sont les mêmes espaces F = G.

Le résultat est Faux si on une des trois hypothèses n’est pas vérifiées.
Si on n’a pas (iii) ceci est trivial.
Si on a (iii) c’est à dire F ⊊ G.
Alors pour H = F , on a F ∩H = F = G ∩H mais pas F +H = F ̸= G = G+H.
Et pour H = G, on a F +H = G = G+H mais F ∩H = F ̸= G = G ∩H.

Exo 15 : a) On le démontre par double inclusion en passant aux éléments.
(⊂) Soit u ∈ (F +G) ∩H alors u = uF + uG avec uF ∈ F et uG ∈ G.
Puis uG = u−uF ∈ H car u, uF ∈ H. Donc uG ∈ G∩H et u = uF +uG ∈ F+(G∩H).
(⊃) Soit u = uF + u0 ∈ F + (G ∩H). On a u ∈ H car uF , u0 ∈ H.
Puis u = uF + u0 ∈ F +G donc u ∈ (F +G) ∩H.

b) 1er cas F ⊂ H : Alors F ∩ H = F et F + H = H. Donc (F + G) ∩ (F + H) =
(F +G) ∩H = F + (G ∩H) = (F ∩H) + (G ∩H).

2eme cas G ⊂ H : Alors (F +G) ∩H = (F ∩H) + (G ∩H) par symétrie des rôles de
F et G.
Puis G∩H = G et F +G ⊂ F +H donc (F +G)∩ (F +H) = F +G = F + (G∩H).

c) On a toujours (F+G)∩H ⊃ F∩H+G∩H. Car pour u = uF +uG ∈ (F∩H)+(G∩H),
on a u ∈ F +G et u ∈ H car uF , uG ∈ H.

Et on a F + (G ∩H) ⊂ (F +G) ∩ (F +H) car pour u = uF + u0 ∈ F + (G ∩H). On
a u = uF + u0 ∈ F +G et u = uF + u0 ∈ F +H. Donc u ∈ (F +G) ∩ (F +H).

Dans R2, si l’on prend trois droite D1, D2 et D3 deux a deux non confondues. On a
Di ∩Dj = {0} et Di +Dj = R2 pour i ̸= j.
Puis (D1 +D2) ∩D3 = R2 ∩D3 = D3 ̸= {0} = {0}+ {0} = D1 ∩D3 +D2 ∩D3.
Et D1 + (D2 ∩D3) = D1 + {0} = D1 ̸= R2 = R2 + R2 = (D1 +D2) ∩ (D1 +D3).

CCL : Il n’y a donc pas de règles de distributivité simples entre les opérations ∩ et +

N.Provost LMB-PCSI1



15.2 Sous-espace vectoriel

sur les espaces vectoriels.
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