15.1 Famille de vecteurs

TD 15-Corrigé : Espace vectoriel de dimension finie

15.1 Famille de vecteurs

Indications :

Pour déterminer la nature d’une famille de vecteurs en dimension finie, il suffit de déterminer
son rang. Il se calcul avec I'algorithme du Pivot de Gauss-Jordan sur la matrice des coordonnées.

On utilise ensuite les caractérisations suivante :

’]—' est libre ssi rgF = Card F ‘ et ’ F est génératrice de F ssi rgF = dimFE

Exo 1: a) On calcul le rang de ces familles :
1 4
rg(vy,v2) =1g [ 1 1| =2 donc la famille est libre.
0 4
4 1 1
rg(vg,vg) =r1g | 1 0 = 2 donc la famille est libre.
4 0
1
rg(vy,vg) =r1g | 1 = 2 donc la famille est libre.
0
1 4 11 -1 11 -1
b) De méme rg(vy,ve,v3) =1g |1 1 —1 =rg|0 3 3 |=rg|(0 1 1 | =2
0 4 4 0 4 4 0 0 O
Donc les vecteurs sont coplanaires et la famille est liée.
Exo 2 : On peut calculer le rang dans chacun des cas :
3 1 2
A onarg((3).(1). ()= (3 | 3)=2
La famille est génératrice de R? mais n’est pas libre.
) 0 ) 2 0 2 1 0 1 1 0 1
b) rg((é),(%),(?)) —rg(1 2 0)=rgf0 1 1 |=rglo 1 1]=3
0 1 1 0 2 -1 0 0 -3

Donc la famille est libre et génératrice de R? ainsi c’est une base.
c¢) De méme rg ((é) , (é)) = 2 est libre mais pas génératrice de R3.
d) Enfin rg ((2), (1)) = 2 est libre et génératrice de R?, c’est donc une base.

. 0
Exo 3 : On note u; = ( 9 ) et ug = (_13> Ils sont non colinéaires et donc engendre un plan

2 1

que I'on peu noté P = Vect g (uy,us). Soit v € R*. On a les équivalences suivantes :

Le vecteur v € P ssi les vecteurs uq, ug et v sont coplanaires ssi rg(uy, us, v) = 2.

-1 0 -3
- 0 1 2
Pour v; = | 2 |, on a rg(uq, ug,v1) =1g 1 3 _3|=+= 2. Donc v1 € P.
8
2 1 8
-1 0 -1
e 1 3
Pour vy = | 3 |, on a rg(ui,uz,v2) = rg g o | T 3. Donc vg ¢ P.
1
1 1

0
1
2
1 1 0
Exo 4: a) On note F; = Vect {(}),<§) ; <}>}
1 1 0
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15.1 Famille de vecteurs

1 1 0 1 1 0 11 0
. . . 1 2 1 0 1 1 0 1 1
Sa dimension est dimgF; = rg 13 117~ o 2 1|™"|o 0o -1]|~ 3.
1 4 0 0 3 0 0 0 -2
1 1 0
Donc F; est un espace de dimension 3 engendré par 3 vecteurs { ( %) , (%) , (%) }
1 4 0

et ils forment donc une base de ce sous-espace.

2 1 -1
b) On note Fy = Vect {(é) , (%) , (_13)}
1 1 0

2 1 -1 110
. . . 1 2 1 011
Sa dimension est dimgFs = rg 30 3| =1%o o0 ol = 2.
11 0 0 00
- 2
Donc les vecteurs sont liés (_1 ) = < ) — (é)
0 1
1
Ainsi F5 = Vect { ( ) 2 } est bien une base de ce sous-espace de dimension 2.
1

) ()G
)+ () (D)=() )

avec des vecteurs non-colinéaires.

et

9

¢) On note Fy = Vect {@) (
(%)

On remarque que <1> (
2

5

Ainsi F3 = Vect (1) 2

0

2
5

Donc F3 admet pour base extraite { ((1)) (%) }
2 0

Exo 5 : On note By = (1, X, X2, X?) la base canonique de R3[X].
! 0
Onap(X) =1-3X+3X2- X% = <—33>  pa(X) = X —2X2 4 X3 = <12> ’
Bo Bo

0 0
p3(X)zX2—X3:<(1)> etp4(X):X3:(8) )
- Bo BO
1 0

Donc rg(plap25p3ap4) =1g 3 _9

-1 1 -1 1
Par caractérisation, la famille est une base de R3[X] de dimension 4.

= o O
o O O

— 4 = rg(F) = dim(Rs[X))

Indications : Dans les exemples plus abstraits, on peut revenir & la définition :

(U1, ..., up) est libre ssi V(A1, ..., \) € K™D 0 Mg =0 = Ay = ... = A, = 0k

(U1, ..., upn) est génératrice de E ssi Vo € E,3(A1,..., \n) € K™, 0 =Y 1| Apug.

Exo 6 : a) Soient Ay,..., A\, € R tel que S Niei =0p.

Alors OE = Z?:l )\1 Z;‘:l €; = Zlfjﬁ’ifn )\iej = Z?=1 Z?:j )\Z—ej.
Donc Vj € [1,n], 352, \i = 0 car (e1,...,e,) est une base de I'espace.
Donc pour tout j € [1,n],A\; =3 ;X\ =3, A =0-0=0.
Ainsi A\ = ... = )\, = 0 donc la famille (eq, ...€,,) est libre.
De plus la famille est composée de n vecteurs identique & la dimension de ’espace.
Donc par caractérisation B’ est une base de E.

ai
b) On a : ( : ) =31 Jae; =Y i ai(e; —€_1) en posant €9 = Op.
B

alp—asz
a1 n n1 az—a3
Donc = Zi:l a;€; — Zi:l A;+1€; = :
B

<25 B’
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15.2  Sous-espace vectoriel

Exo 7 : Pour simplifier, on ajoute la notation e, 11 = e;.
Onau=3_ (—1)rw, =30 (=1 (ex + ext1)
=Y (=Dkey + ZZ:;(—l)k_lek par changement d’indices dans la 2nd somme.
=3 (=D)kep — S (—1)kep = (—=1)ey — (—1)" e, 11 par relation de Chasles.

=[-

14 (=1)"]ey car ept1 = e3.

- —2e; si n est impair
Ainsi u =

0 si n est pair

Si n est pair, on a trouvé >_,_, (—1)*w; = u = 0 une relation de liaison de la famille. Ce
n’est pas une base car elle n’est pas libre.

Si n est impair, on note F' = Vect (wy, ..., w,). On a e = %u € F par le calcul précédent.
Puis e; = w1 —e; € F car F est stable par opérations.

On démontre ainsi par récurrence immédiate que ex11 = wp —ex € F pour tout 1 < k < n.
Donc E = Vect (ey,...,e,) C F permet de démontrer que E = F = Vect (wy, ..., wy).
Ceci montre que la famille est génératrice de F et elle est constituée de n vecteurs, par
caractérisation, c’est une base de E.

Exo 8 :

a) Soient A1, .., \ns1 € K tels que 27 Ajuy = 0.

i=1

Alors D1 | Nt = —App1Un1-

Donc A\, 41 = 0 car sinon 11 = ﬁil Yo A, € Vect (u, ..., uy,) Absurde.
Puis Z:;l Aiu; = 0 donne Ay = ... = A\, = 0 car la famille est libre.

Ainsi My = ... = A\, = A\yy1 = 0 donce (uq, ..., Up, Up41) est une famille libre.

On écrit wp1 = Y iy piui. Soit v € E.
La famille (u, ..., tun, unt1) est génératrice donc ils existent des scalaires tels que :
1
v = Z:lio )\Zuz = Z?:l )\iui + )\n+1un+1
n n n
=D i Aiti + A1 Dy it = iy (N + Anpap)ug € Vect (u, .o, ).
Ainsi la famille (w1, ..., u,) est bien une famille génératrice.

15.2 Sous-espace vectoriel

Indications : En dimension finie, tous les sous-espaces vectoriels peuvent s’écrient F =
Vect F.

Exo09:

a) OnaF:{(.z) € R3 tel que y =2z et z = —3x}

1
= {(3%) pour z € R} = Vectg ( 23). Donc F' est bien un espace vectoriel.
On a Og2 = () ¢ G donc G n’est pas un espace vectoriel.

Onawu; = (g) et us = (é) deux vecteurs de H mais uj + us = (é) ¢ H.
Donc H n’est pas un espace vectoriel.

Onau= (_01) € I mais —u ¢ I donc I n’est pas un espace vectoriel.
OnaJ={u(l)+v () pour u,v € R} = Vectr (1), (1)) =R
Donc J est un espace vectoriel.

a) Ona:A= {(g) ERg,x—I—y—&—z:O} = {(_yg Z) pour y,zER} :VectR((

1
0
—1 0
Ainsi A est un ss-R-ev de dimension 2 (un plan vectoriel) avec pour base : (( ! ) , ( o )) .

)

=0
échelonné homogene de

Y+ 2z =0

=0
On résout le systeme Try+z & Ytz
rz+2y+3z2 =0

rang 2.
Do 1 {3 o =) = ().

1
Donc B est un ss-R-ev de dimension 1 (une droite vectorielle) avec pour base (<712 ) ).

-1

2))
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15.2  Sous-espace vectoriel

Exo 11 :

a) L’appartenance A € € se traduit par S(A) = 3771 i jo = Doj_) Gig,j = )iy Qi =
S, @int1—; pour tout ig,jo € [1,n] et S(A) € R la valeur de la somme.

Non vide : La matrice nulle appartient a £ avec la somme S(0) = 0.

Stable par combinaison linéaire : Soit A, B € £ et A € R.

Pour une ligne iy € [1,n], on a :

Z?:l[A + ABlig,j = 301 [Alig,g + A Z?:l[B]io,j = S5(A) + AS(B).

Pour une colonne jy € ﬁl,n]], on a:

2ic1lA+ ABlijo = 3501 [Alige + A2 [Blige = S(A) + AS(B).

Pour la ler diagonale, on a :

ST A+ ABl = S [Al 4 AX [Blus = S(A) + AS(B).

Pour la 2eme diagonale, on a :

Yo [A+ ABliny1-i = 2y [Alinr1—i + A [Blins1-i = S(A) + AS(B).

Donc A+ AB € £ avec pour somme S(A + AB) = S(A) + AS(B).

On a N = {A € &£ tel que S(A) =0} = KerS donc c’est un sous-espace de £. On note
J=(1).OnaJeE& et C=VectgJ est un ss-ev de £.

Puis on a S(J) = n. Donc pour A € N NC,ona A= AJ puis 0 = S(A4) = An et ainsi
A = 0. Donc N et C sont en somme directe.

Puis pour A € &, on pose A = %. OnaA=(A—-XJ)+AJ e N+Ccar S(A-)\J) =
S(A) —An=0.

Donc £ =N & C.

Pour N € N, on remarque que N € N'. On pose S = 2 (N+N7T) et A= 2(N-NT).
On a S symétrique et A antisymétrique étant I'unique décomposition sur M, (R). Puis
S e€NetAc N car N est stable par combinaison linéaire. Donc M = S + A est
I'unique décomposition sur N' =S @ A.

On a C = VectrJ,

0 a b 0 1 -1
A= —a 0 c¢]| tlque0=a+b=-a+c=-b—cp=Vectg | -1 0 1
b —c 0 1 -1 0
a b —a—b 1 -1 0
S = b c —b—c tel que {2a+2b+2c =0 =Vectg | -1 O 1
—a—b —b—c a+2b+c —2a—2b+c =0 0o 1 -1
1 1 1 1 -1 0 0 1 -1
Puis E=C®S ® A= Vectp 11 1],1-1 0 11]1,1-1 0 1
1 1 1 0 1 -1 1 -1 0
a+b a—b+c a—c
= a—b—c a a+b+c]| poura,b,ceR

a+c a+b—c a—>b

Indications : La formule de Grassmann permet de calculer efficacement certaines dimen-

sions :
d1m(F1 + F2) = dimF) + dimF; — d1m(F1 N FQ)
Exo 12 : On commence par considérer une base de By = (e1,...,e,) de Fi N Fy avec p =
dimR(Fl n FQ)
Puis on la complete en une base By = By U F1 = (e1,...,€p, U1, ..., un—p) de Fy avec

P <n= dimRFl = dimRFg.

On la complete également en une base By = By U Fo = (€1, ..., €p, V1, ..., Up—p) de Fh.

On pose Gy = Vectg(u1 + v1, ..., Up—p + Un—p).

On a F1 + Gy = Vect (e1, ..., €p, Uty oo, Up—p, U1 + V1, ooy Un—p + Unpp)

= Vect (e1, ..., €p, Ul ooy Up—p; V1, ooy Unpp)

= Vect (€1, ..., €p, Uty oovy Un—p) + Vect (€1, ..., €p, V1, ooy Up—p) = F1 + Fo.

Puis dlmR(Fl + GQ) = dlmR(Fl + Fg) = dlmR(Fl) + dlmR(FQ) - dlmR(Fl N Fg) =2n —p
d’apres la formule de Grassmann.

Et dimR(Fl n Go) = dimgpF; + dimpGqy — dlm]R(F + Go)
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15.2  Sous-espace vectoriel

=n+rg(us + V1, ey Unp + Vn—p) — 2n—p) <n+(n—p) — (2n —p) = 0.
Donc Fy NGy = {0} sont en somme directe avec Fy; & G = Fy + Fb.

On obtient par symétrie du probleme et de la définition de G que F> & G = F; + F.
Enfin on peut considérer un supplémentaire H de Fy + F5 dans E cad H @ (Fy + F») = E.
Et ainsi on obtient £ = (Fy +F»)®H = F,®Go@® H pouri =1ou2. Et donc G =Gy ® H
est un supplémentaire commun de F; et F» dans FE.

S -1 ~1 -1
Exo 13 : a)OnaFl—{< Y >poury,z,te]R}—VectR{<6),(?),(8)}.
,y+z+tt -1 0 1 01 '
ovsri{(5) msve) v ()1 ()
¢ 0 0 1

Donc ce sont des espaces vectoriels en tant qu’espace engendré.

b) Puis dimg(F}) :rg{<_él> , (_?)1) , (_‘(1%1)} =3.
-1 1 1
s = (). (1) () -

Puis <8> S FQ\Fl donc F & Fi+F C R*
1
donc 3 = dimgF} < dimg(F; + Fy) < dimgR* = 4. Ainsi dimg (F} + F») = 4 et d’aprés

la formule de Grassmann dimg(Fy N Fy) =3+3 —4=2.

Exo 14 : On a dimpF = dimg(F + H) + dimg(F N H) — dimpH = dimg(G + H) + dimg(G N
H) — dimgH = dimgG. De plus, on a F' C G donc ce sont les mémes espaces F' = G.

Le résultat est Faux si on une des trois hypotheses n’est pas vérifiées.

Si on n’a pas (iii) ceci est trivial.

Sion a (iii) c’est & dire F & G.

Alorspour H=F,ona FNH=F=GNHmaispass F+ H=F#G=G+ H.
Etpowr H=G,onaF+ H=G=G+Hmais FNH=F#G=GNH.

Exo 15: a) On le démontre par double inclusion en passant aux éléments.
(C) Soit uw € (F+G)N H alors u = ur + ug avec up € F et ug € G.
Puis ug = u—up € H car u,ur € H. Donc ug € GNH et u = up+ug € F+(GNH).
(D) Soit u=up+up€e F+(GNH).Onau € H car up,up € H.
Puisu=up +up € F+Gdoncu e (F+G)NH.
b) lercas FC H : Alors FNH = Fet F+H = H. Donc (F+G)N(F+H) =
(F+G)NH=F+ (GNH)=(FNH)+ (GnH).

2eme cas G C H : Alors (F+G)NH = (FNH)+ (GN H) par symétrie des roles de

FetG.

PusGNH=Get F+GC F+Hdonc (F+G)N(F+H)=F+G=F+(GNH).
¢) On a toujours (F+G)NH D FNH+GNH. Car pour u = up+ug € (FNH)+(GNH),

onau€ F+Getuée Hcar up,ug € H.

Etona F+(GNH)C(F+G)N(F+ H) car pour u =up +ug € F+(GNH). On
au=up+u € F+Getu=up+u € F+H.Doncue (F+G)N(F+H).

Dans R?, si I'on prend trois droite Dq, Dy et D3 deux a deux non confondues. On a
Diij = {O} et DZ+DJ :RQ pouri#j.

Puis (D1+D2)QD3 :RzﬂDg = D3 7£ {0} = {0}+{0} =D N D3+ DyN Ds.

Et D1+(D20D3) =D1+{O}=D1 #R2 =R24+R%2= (D1 + Dy) N (D1 + Ds).

CCL : Il n’y a donc pas de regles de distributivité simples entre les opérations N et +
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sur les espaces vectoriels.
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