
16.1 Contexte explicite

TD 16-Corrigé : Application linéaire

16.1 Contexte explicite

Indications : Pour démontrer que f : E → F est linéaire, on commence par vérifier que E et
F sont des espaces vectoriels. Puis on montre que f(u+ λv) = f(u) + λf(v) pour tout u, v ∈ E
et λ ∈ K.

L’image est engendré par l’image d’une base Imf = Vect f(BE).
Le noyau est obtenue en résolvant le système f(u) = 0F .
On peut en général utiliser le théorème du rang pour obtenir un lien entre noyau et image.

dimE = dimImf + dimKerf

Exo 1 : a) Soient u1 = ( x1
y1 ) , u2 = ( x2

y2 ) ∈ R2 et λ ∈ R.
On a f1(u1+λu2) = f1

(
x1+λx2

y1+λy2

)
= 2(x1+λx2)−3(y1+λy2) = (2x1−3y1)+λ(2x2−3y2)

= f1 (
x1
y1 ) + λf1 (

x2
y2 ) = f1(u1) + λf1(u2).

Donc f1 ∈ LR(R2,R) est bien une application linéaire.

On a Imf1 = f1(R2) = f1(Vect R {( 10 ) , ( 01 )}) = Vect R {f1 ( 10 ) , f1 ( 01 )} = R.

Puis Kerf1 =
{
( xy ) ∈ R2 tels que f1 (

x
y ) = 0

}
=
{
( xy ) ∈ R2 tels que 2x− 3y = 0

}
={(

3y/2
y

)
pour y ∈ R

}
= Vect R

(
3/2
1

)
= Vect R ( 32 ).

b) Soient u1 = ( x1
y1 ) , u2 = ( x2

y2 ) ∈ R2 et λ ∈ R.
On a f2(u1+λu2) = f2

(
x1+λx2

y1+λy2

)
=
(

(x1+λx2)−2(y1+λy2)
3(x1+λx2)−6(y1+λy2)

)
=
( x1−2y1

3x1−6y1

)
+λ

( x2−2y2

3x2−6y2

)
= f2 (

x1
y1 ) + λf2 (

x2
y2 ) = f2(u1) + λf2(u2).

Donc f2 ∈ LR(R2,R2) est bien une application linéaire.

On a Imf2 = Vect R {f2 ( 10 ) , f2 ( 01 )} = Vect R
{
( 13 ) ,

(−2
−6

)}
= Vect R ( 13 ) car les vec-

teurs sont colinéaires et donc engendrent une droite vectorielle.

On a Kerf2 =
{
( xy ) ∈ R2 tels que x− 2y = 3x− 6y = 0

}{
( xy ) ∈ R2 tels que x = 2y

}
=
{(

2y
y

)
pour y ∈ R

}
= Vect R ( 21 ).

c) Soient u1 = ( x1
y1 ) , u2 = ( x2

y2 ) ∈ C2 et λ ∈ C.
On a f3(u1 + λu2) = f3

(
x1+λx2

y1+λy2

)
=
(

i(x1+λx2)−(y1+λy2)
(x1+λx2)+i(y1+λy2)

)
=
(

ix1−y1

x1+iy1

)
+ λ

(
ix2−y2

x2+iy2

)
= f3 (

x1
y1 ) + λf3 (

x2
y2 ) = f3(u1) + λf3(u2).

Donc f3 ∈ LC(C2,C2) est bien une application linéaire.

On a Imf3 = Vect C {f3 ( 10 ) , f3 ( 01 )} = Vect C
{
( i
1 ) ,
(−1

i

)}
= Vect R ( i

1 ) car les vec-

teurs sont colinéaires
(−1

i

)
= i ( i

1 ) et donc engendrent une droite vectorielle.

On a Kerf3 =
{
( xy ) ∈ C2 tels que ix− y = x+ iy = 0

}{
( xy ) ∈ C2 tels que y = ix

}
car ce sont les mêmes équations

= {( x
ix ) pour x ∈ C} = Vect R ( 1i ).

d) Soient u1 = ( x1
y1 ) , u2 = ( x2

y2 ) ∈ R2 et λ ∈ R.

On a f4(u1+λu2) = f4

(
x1+λx2

y1+λy2

)
=

(
3(x1+λx2)+5(y1+λy2)
(x1+λx2)−2(y1+λy2)
2(x1+λx2)−(y1+λy2)

)
=

(
3x1+5y1

x1−2y1

2x1−y1

)
+λ

(
3x2+5y2

x2−2y2

2x2−y2

)
= f4 (

x1
y1 ) + λf4 (

x2
y2 ) = f2(u1) + λf2(u2).

Donc f4 ∈ LR(R2,R3) est bien une application linéaire.
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16.1 Contexte explicite

On a Imf4 = Vect R {f4 ( 10 ) , f4 ( 01 )} = Vect R

{(
3
1
2

)
,
(

5
−2
−1

)}
, un plan vectorielle.

On a Kerf2 =
{
( xy ) ∈ R2 tels que 3x+ 5y = x− 2y = 2x− y = 0

}
= {( 00 )}.

e) Soient u1 =
(

x1
y1
z1

)
, u2 =

(
x2
y2
z2

)
∈ R3 et λ ∈ R.

On a f5(u1+λu2) = f5

(
x1+λx2

y1+λy2

z1+λz2

)
=
(

(x1+λx2)+5(y1+λy2)−(z1+λz2)
−(x1+λx2)+2(y1+λy2)−2(z1+λz2)

)
=
( x1+5y1−z1
−x1+2y1−2z1

)
+

λ
( x2+5y2−z2
−x2+2y2−2z2

)
= f5

(
x1
y1
z1

)
+ λf5

(
x2
y2
z2

)
= f5(u1) + λf5(u2).

Donc f5 ∈ LR(R3,R2) est bien une application linéaire.

On a Imf5 = Vect R

{
f5

(
1
0
0

)
, f5

(
0
1
0

)
, f5

(
0
0
1

)}
= Vect R

{(
1
−1

)
, ( 52 ) ,

(−1
−2

)}
= R2,

car il y a deux vecteurs non colinéaires dans un espace de dimension 2 donc la famille
est génératrice.

On a Kerf5 =
{(

x
y
z

)
∈ R3 tels que x+ 5y − z = −x+ 2y − 2z = 0

}
{(

x
y
z

)
∈ R3 tels que x = −5y + z et 7y = 3z

}
=

{(
−(8/7)z
(3/7)z

z

)
pour z ∈ R

}
= Vect R

(−8
3
7

)
.

Exo 2 : On détermine la nature de la famille B =

{(
10
1
2
0

)
,

(
1
2
1
0

)
,

(
2
0
1
1

)
,

(
0
0
0
2

)}
en calculant son

rang.
On a rgB = 4 = CardB = dimRR4 donc c’est une base de l’espace.
D’après le cours, une application linéaire est fixée de manière unique par l’image d’une base.

On a donc

(
1
1
1
1

)
= a

(
10
1
2
0

)
+ b

(
1
2
1
0

)
+ c

(
2
0
1
1

)
+d

(
0
0
0
2

)
avec a, b, c, d ∈ R à déterminer car la

famille est génératrice. On doit ainsi résoudre le système associée à la matrice augmentée :
10 1 2 0 1
1 2 0 0 1
2 1 1 0 1
0 0 1 2 1

 ∼L ... ∼L


1 0 0 0 29/39
0 1 0 0 5/39
0 0 1 0 −8/13
0 0 0 1 21/26

 donc

(
1
1
1
1

)
=

(
29/39
5/39
−8/13
21/26

)
B

Donc f

(
1
1
1
1

)
= 29/39f

(
10
1
2
0

)
+ 5/39

(
1
2
1
0

)
− 8/13

(
2
0
1
1

)
+ 21/26

(
0
0
0
2

)
= 31/13.

On a Imf = Vect Rf(B) = Vect R(1, 2, 3, 4) = R. Donc l’application est surjective.

Soit u =

(
a
b
c
d

)
B
∈ R4 exprimé dans la base B. On a f(u) = 0 ssi a + 2b + 3c + 4d = 0 ssi

a = −2b− 3c− 4d avec b, c, d ∈ R des paramètres.

Donc Kerf = {
(−2b−3c−4d

b
c
d

)
B

pour b, c, d ∈ R} = Vect R{
(−2

1
0
0

)
B
,

(−3
0
1
0

)
B
,

(−4
0
0
1

)
B
}

= Vect R{
(

1
2
1
0

)
−2

(
10
1
2
0

)
,

(
2
0
1
1

)
−3

(
10
1
2
0

)
,

(
0
0
0
2

)
−4

(
10
1
2
0

)
}= Vect R{

(−19
0
−3
0

)
,

(−28
−3
−5
1

)
,

(−40
−4
−8
2

)
}

exprimé dans la base canonique.

Exo 3 : a) On étudie la famille (v1, v2, v3). On a v2 + v3 = 2v1. Donc la famille est liée.
Si il existait une telle application linéaire alors e2 + e3 = f(v2 + v3) = f(2v1) = 2e1.
Ainsi la famille (e1, e2, e3) est liée Absurde pour une base.

b) La famille (v1, v2) est libre. On peut la compléter en une base (v1, v2, u) de R3 (par
exemple u = e1 convient).
Soit w ∈ R3 un vecteur quelconque, il existe une unique application fw ∈ LR(R3)
tel que : fw(v1) = e1, fw(v2) = e2 et fw(u) = w. De plus, on a fw(v3) = fw(2v1 −
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16.2 Contexte abstrait

v2) = 2e1 − e2. Donc fw vérifie les conditions de l’énoncé et il existe autant de telles
applications que de choix de w ∈ R3 c’est à dire une infinité.

Exo 4 : a) On dispose de la base canonique B0 = (1, i) de C en tant que R-ev. Donc f est
entièrement déterminée par f(1) et f(i). Pour z = x + iy ∈ C, on a f(z) = xf(1) +

yf(i) = z+z̄
2 f(1) + z−z̄

2i f(i) = f(1)−if(i)
2 z + f(1)+if(i)

2 z̄. Ainsi a = f(1)−if(i)
2 et b =

f(1)+if(i)
2 conviennent.

b) L’application est C-linéaire si on a de plus f(λz) = λf(z) pour λ ∈ C. Donc en

particulier, il faut f(i) = if(1). Ce fournit des simplifications : a = f(1)−if(i)
2 = f(1)

et b = f(1)+if(i)
2 = 0.

Donc f(z) = f(1)z sont bien les seules applications C-linéaires.
Exo 5 : a) Soient (un)n≥0, (vn)n≥0 ∈ RN et λ ∈ R.

On a f ((un + λvn)n≥0) = ((un+1 + λvn+1)− (un + λvn))n≥0 = (un+1 − un)n≥0 +
λ(vn+1 − vn)n≥0 = f((un)n≥0) + λf((vn)n≥0).
Donc f est bien linéaire.

Soit (un)n≥0 ∈ RN. On a (un)n≥0 ∈ Kerf ssi (un+1 − un)n≥0 = (0)n≥0 ssi ∀n ∈
N, un+1 − un = 0 ssi (un)n≥0 est constante.
Donc Kerf = {(c)n≥0 pour c ∈ R} = Vect R(1)n≥0.

Puis Imf = RN. Car pour (vn)n≥0 ∈ RN, on peut définir pour tout n ∈ N, un =∑n−1
k=0 vk. Alors on a f((un)n≥0) = (vn)n≥0 ∈ Imf car un+1 − un =

∑n
k=0 vk −∑n−1

k=0 vk = vn.

b) Soit q ∈ R. Une suite géométrique vérifie un+1 = qun donc f(un) = (q − 1)un puis
(f−(q−1)idNR)(un) = 0. Ainsi Ker

[
f − (q − 1)f0

]
est bien l’espace vectoriel des suites

de raison q.

Exo 6 : a) Pour P ∈ Rn[X], on a deg(f(P )) = deg(P +(1−X)P ′) ≤ max(degP, 1+degP ′) =
degP ≤ n. Donc f(P ) ∈ Rn[X] et les espaces de f sont bien définies.
Soient P1, P2 ∈ Rn[X] et λ ∈ R. On a f(P1+λP2) = (P1+λP2)+(1−X)(P1+λP2)

′ =
P1+(1−X)P ′

1+λ(P2+(1−X)P ′
2) = f(P1)+λf(P2). Donc f est bien un endomorphisme

de Rn[X].

b) Soit P ∈ Kerf . On a f(P ) = 0 donc (X − 1)P ′ − P = 0 est associée à l’équa-
tion différentielle linéaire homogène d’ordre 1 : y′(t) − 1

t−1y(t) = 0. Ainsi y(t) =

λ exp ln |t − 1| =

{
λ1(t− 1) si t < 1

λ2(t− 1) si t > 1
pour λ1, λ2 ∈ R. Donc les solutions polyno-

miales sont P (X) = λ(X − 1) pour λ ∈ R et Kerf = Vect R(X − 1).

On a Rn[X] = Vect R(1, X, ...,Xn) donc Imf = Vect R(f(1), f(X), ..., f(Xn)).
Or f(X − 1) = 0 donc f(X) = f(1) = 1. Puis pour k ∈ J2, nK, f(Xk) = Xk + k(1 −
X)Xk−1 = (1− k)Xk + kXk−1 de degré k.
Ainsi la famille (1, f(X2), ..., f(Xn)) = (1,−X2+2X, ..., (1−n)Xn+nXn−1) est libre
car échelonnée en degré.
Donc Imf = Vect R(1,−X2 + 2X, ..., (1− n)Xn + nXn−1).

16.2 Contexte abstrait

Exo 7 : Pour x /∈ Ker(fn−1), on a fn−1(x) ̸= 0E et ∀i ≥ n, f i(x) = 0E . La famille F =
(x, f(x), ..., fn−1(x)) de n vecteurs dans un espace de dimension n. Donc CardF = dimRE.

Soient λ0, ..., λn−1 ∈ R tel que
∑n−1

k=0 λkf
k(x) = 0E .

On démontre par récurrence totale que λk = 0.
Init : On a 0E = fn−1(0E) =

∑n−1
i=0 λif

n−1(f i(x)) =
∑n−1

i=0 λif
n+i−1(x) = λ0f

n−1(x).
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16.2 Contexte abstrait

Donc λ0 = 0.
Heré : Soit 0 ≤ k ≤ n−1 tq ∀i ≤ k, λi = 0, alors 0E = fn−k−2(0E) =

∑n−1
i=0 λif

n−k−2(f i(x))

= 0E + ...+ 0E +
∑n−1

i=k+1 λif
n+i−k−2(x) = λk+1f

n−1(x) + 0E + ...+ 0E donc λk+1 = 0.
Ccl : Ainsi λ0 = ... = λn−1 = 0 et la famille F est libre.
Par thm de caractérisation, la famille F est une base de E.

Exo 8 : a) (⇐) On suppose qu’il existe h ∈ L(F ) tel que g = h ◦ f .
Soit u ∈ Kerf . Alors g(u) = h(f(u)) = h(0) = 0 donc u ∈ Kerg.
(⇒) On suppose que Kerf ⊂ Kerg. On considère un supplémentaire S de Kerf dans E

i.e. E = S ⊕Kerf . Alors f |Imf
S est une application injective Kerf |Imf

S = S ∩Kerf = 0

et surjective Imf = f(E) = f(S + Kerf) = f(S) = Imf |Kerf
S . Donc f |Imf

S est un

isomorphisme et on pose h = g ◦ (f |Imf
S )−1 pour avoir g = h ◦ f .

b) (⇐) On suppose qu’il existe h ∈ L(E) tel que f = g ◦ h.
Alors Imf = f(E) = g(h(E)) ⊂ g(E) = Img car h(E) ⊂ E.
(⇒) On suppose que Imf ⊂ Img. Alors de même en considérant un supplémentaire

de Kerg dans E. On obtient g|Img
S est un isomorphisme et on peut poser h(u) =

(g|Img
S )−1(f(u)) bien défini car f(u) ∈ Imf ⊂ Img l’espace de départ de (g|Img

S )−1.
Ainsi f = g ◦ h.

Exo 9 : a) On suppose par l’absurde que p = λq. Alors p = p2 = (λq)2 = λ2q2 = λ2q. Ainsi
λq = p = λ2q avec q ̸= 0. Donc λ2 = λ puis λ ∈ {0, 1}. Ceci est absurde car si λ = 1
alors p = q et si λ = 0 alors p = 0.

b) (⇐) On suppose que p ◦ q = q ◦ p = 0 alors (p + q)2 = p2 + p ◦ q + q ◦ p + q2 =
p+ 0 + 0 + q = p+ q. Donc p+ q est un projecteur.
(⇒) On suppose que (p + q)2 = p + q alors 0 = (p + q)2 − (p + q) = p2 + p ◦ q + q ◦
p + q2 − p − q = p ◦ q + q ◦ p car p2 = p et q2 = q. Puis p ◦ q = −q ◦ p = −q2 ◦ p =
−q ◦ (q ◦ p) = q ◦ p ◦ q = −p ◦ q ◦ q = −p ◦ q car q ◦ q = q.
Ainsi p ◦ q = −p ◦ q donc p ◦ q = 0. Enfin q ◦ p = −p ◦ q = 0.

c) On montre que Im(p+ q) = Imp⊕ Imq.
En effet, si u ∈ Imp ∩ Imq alors u = p(u) = q(u) car l’image d’un projecteur est
invariante. Donc 0 = p(q(u)) = p(u) = u.
Puis pour u ∈ Im(p+ q) alors u = (p+ q)(u) = p(u) + q(u) ∈ Imp+ Imq.
Réciproquement, pour u = p(x)+ q(y) ∈ Imp+ Imq, on a (p+ q)(u) = (p+ q)(p(x))+
(p+ q)(q(y)) = p(p(x)) + q(p(x)) + p(q(y)) + q(q(y)) = p(x) + 0 + 0 + p(y) = u. Donc
u = (p+ q)(u) ∈ Im(p+ q).

On démontre que Ker(p+ q) = Kerp ∩Kerq.
Pour u ∈ Kerp∩Kerq, on a (p+ q)(u) = p(u)+ q(u) = 0+0 = 0. Donc u ∈ Ker(p+ q).
Réciproquement pour u ∈ Ker(p+q), on a p(u)+q(u) = 0. Donc 0 = p(0) = p(p(u))+
p(q(u)) = p(u) + 0 = p(u) donc u ∈ Kerp. Et 0 = q(u) = q(p(u)) + q(q(u)) = q(u)
donc u ∈ Kerq. Ainsi u ∈ Kerp ∩Kerq.

Exo 10 : (⇒) On suppose Kerf = Imf . Alors pour u ∈ E, f2(u) = f(f(u)) = 0 car f(u) ∈ Kerf .
Et rgR(f) = dimRImf = dimRKerf = dimRE − rgRf d’après le théorème du rang.

(⇐) On suppose que f2 = 0 et n = 2rg(f).
On a Imf ⊂ Kerf car pour v = f(u) ∈ Imf , on a f(v) = f2(u) = 0 d’où v ∈ Kerf .
Puis le théorème du rang donne rg(f) + dimKerf = n = 2rg(f) donc dimKerf = rgf =
dimImf .
Ainsi par dimension les espaces vectoriels Kerf = Imf .

Exo 11 : a) On a Im(f + g) ⊂ Imf + Img car pour v = (f + g)(u) ∈ Im(f + g) alors v =
f(u) + g(u) ∈ Imf + Img. Donc rg(f + g) = dimKIm(f + g) ≤ dimK(Imf + Img) =
dimKImf + dimKImg − dimK(Imf ∩ Img) d’après la formule de Grassmann
≤ dimKImf + dimKImg = rgf + rgg.
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b) On a rg(f) = rg(λf) = rg(λf + g − g) ≤ rg(λf + g) + rg(−g) = rg(λf + g) + rg(g).
Donc rg(f)− rg(g) ≤ rg(λf + g).
Puis rg(g) = rg(λf + g − λf) ≤ rg(λf + g) + rg(−λf) = rg(λf + g) + rg(f).
Ainsi rg(g)− rg(f) ≤ rg(λf + g).
Donc |rg(f)− rg(g)| ≤ rg(λf + g) complète l’inégalité triangulaire sur les rangs.

Exo 12 : a) Soient (u1, u2), (v1, v2) ∈ E1 × E2 et λ ∈ K.
On a f(u1 + λu2, v1 + λv2) = u1 + λu2 + v1 + λv2 = (u1 + v1) + λ(u2 + v2) =
f(u1, v1) + λf(u2, v2). Donc f est bien linéaire.

b) Soit (u1, u2) ∈ E1 ×E2. On a (u1, u2) ∈ Kerf ssi u1 + u2 = 0 ssi u1 = −u2 ∈ E1 ∩E2.
Donc Kerf = {(u,−u) pour u ∈ E1 ∩ E2}.
Par définition, on a f(E1 × E2) = {u1 + u2 pour u1 ∈ E1 et u2 ∈ E2} = E1 + E2.

c) Le théorème du rang montre que dimK(E1×E2) = dimK ker f+dimKImf = dimK(E1∩
E2) + dimK(E1 + E2). Or dimK(E1 × E2) = dimKE1 + dimKE2.
Donc on obtient la formule de Grassmann : dimK(E1 + E2) = dimKE1 + dimKE2 −
dimK(E1 ∩ E2)

Exo 13 : a) Pour v ∈ E, on pose u = v − (g ◦ f)(v) ∈ E. On a f(u) = f(v) − f(g(f(v))) =
f(v)− f(v) = 0F . Donc u ∈ Kerf .

b) Soit u ∈ Kerf ∩ Im(g ◦ f) alors u = (g ◦ f)(v) puis 0F = f(u) = f(g(f(v))) = f(v)
donc u = g(f(v)) = g(0F ) = 0E . Ainsi Kerf ∩ Im(g ◦ f) = {0E}.
Soit v ∈ E, on a v = [v − (g ◦ f)(v)] + (g ◦ f)(v) ∈ Kerf + Im(g ◦ f) d’après a)

c) On peut en déduire dimKE = dimKKerf + dimKIm(g ◦ f) = dimKKerf + rg(g ◦ f).
Puis le théorème du rang donne également dimKE = dimKKerf + rg(f).
On en déduit donc rg(g ◦ f) = rgf . Puis rg(g ◦ f) ≤ min(rgf, rgg) ≤ rg(g) d’après le
cours. Donc rg(f) ≤ rg(g).

Exo 14 : a) Soit D une droite supplémentaire de H alors E = D ⊕ H donc n = 1 + dimH.
Ainsi les hyperplans sont de dimension n− 1.
Pour deux hyperplans distincts, on a n−1 = dimH1 < dim(H1+H2) ≤ n car on a les
inclusionsH1 ⊊ (H1+H2) ⊂ E. Donc dim(H1+H2) = n puis la formule de Grassmann
montre que dim(H1∩H2) = dimH1+dimH2−dim(H1+H2) = (n−1)+(n−1)−n =
n− 2.

b) Pour f : E → R non nulle. On a {0} ⊊ Imf ⊂ R donc rgf = dimImf = 1. D’après
le théorème du rang, on en déduit dimKerf = dimE − rgf = n − 1. C’est donc un
hyperplan de E.

c) Soit H un hyperplan de E et D un droite supplémentaire. On introduit d ∈ D un
vecteur directeur (i.e. non nul) deD. Pour u ∈ E, on a une unique écriture u = hu+λud
car E = H⊕Vect (d). Donc on peut construire l’application f : E → R, u 7→ λu. C’est
bien une application linéaire. Et f(H) = {0} donc H ⊂ Kerf . D’après ce qui précède
on a également dimH = n − 1 = dimKerf . Donc H = Kerf est bien le noyau d’une
forme linéaire (i.e. une application linéaire à valeurs dans K)

Exo 15 : a) On a Imf ⊂ R2 donc rgf = dimImf ≤ 2 càd rg(f) ∈ {0, 1, 2}.
b) Pour u ∈ E, on note f(u) = (fx(u), fy(u)) ∈ R2 avec fx(u) ∈ R et fy(u) ∈ R. On a

p1(f(u)) = fx(u) et p2(f(u)) = fy(u).
Puis u ∈ Kerf ssi f(u) = (0, 0) ssi fx(u) = fy(u) = 0 ssi p1(f(u)) = p2(f(u)) = 0 ssi
u ∈ Ker(p1 ◦ f) ∩Ker(p2 ◦ f).
Donc Ker(f) = Ker(p1 ◦ f) ∩Ker(p2 ◦ f)

c) On a alors Imf = Vect R ( ab ) car de dimension 1. Donc on a bp1◦f−ap2◦f = 0LR(E,R).
En effet, pour u ∈ E, f(u) = λu (

a
b ). Donc p1 ◦ f(u) = λua et p2 ◦ f(u) = λub. Puis on

trouve bien bp1 ◦ f(u)− ap2 ◦ f(u) = 0.

d) Si f est surjective alors rg(f) = dimR2 = 2 donc d’après le théorème du rang
dimKerf = dimE − rgf = n− 2.
Réciproquement pour F un espace de dimension n − 2. D’après l’exercice précédent,
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16.2 Contexte abstrait

F est l’intersection de deux hyperplans H1 et H2. Puis H1 = Kerf1 et H2 = Kerf2.
Donc en posant f(u) = (f1(u), f2(u)). On obtient Kerf = Kerf1 ∩Kerf2 = H1 ∩H2.
Avec dimKerf = n− 2 donc rgf = dimE−dimKerf = 2 d’après le théorème du rang.
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