16.1 Contexte explicite

TD 16-Corrigé : Application linéaire

16.1 Contexte explicite

Indications : Pour démontrer que f : E — F est linéaire, on commence par vérifier que F et
F sont des espaces vectoriels. Puis on montre que f(u + Av) = f(u) + Af(v) pour tout u,v € F
et A e K.

L’image est engendré par I'image d’une base Imf = Vect f(Bg).

Le noyau est obtenue en résolvant le systeme f(u) = Op.

On peut en général utiliser le théoreme du rang pour obtenir un lien entre noyau et image.

’ dimF = dimIm f 4+ dimKer f ‘

Exo 1: a) Soient u; = (5! ),us = (32) € R? et X € R.
Ona fi(uwi+Aug) = fi (2113\%) = 2(z1+Az2) =3(y1+Ay2) = (221—3y1) +A(272—3y2)

= f1 () + A1 (52) = fi(ua) + Afi(uz).

Donc f; € Lg(R% R) est bien une application linéaire.

Onalmfy = f1(R?) = fi(Vectr {(4),(§)}) = Vectr {f1 (§), /1 ()} =

Puis Kerf; = {(}) € R? tels que f
{(3yy/2) poulryeR}:Vecth(S{2

(y) =0} = {(}) € R? tels que 2z — 3y =0} =

b) Soient u; = (g1 ),u2 = (32) € R? et A € R.
_ r1+Ax o (z14+Az2)—2(y1+Ay2) _ (121 To—2ys
On a f2(U1 +/\U2) =/ <y1+>\y§ ) - (3(:1311+)\9022)*6(yy11+)\yz\/22)) - (311176yyl ) +A (3;2*6%;2 )

= fa(n) + M2 (42) = fa(ur) + Afa(uz).

Donc fo € Lg(R2,R?) est bien une application linéaire.

On aImfy = Vectr {f2($),f2(9)} = Vectr {(3),(Z5)} = Vectr (}) car les vec-
teurs sont colinéaires et donc engendrent une droite vectorielle.

On a Kerfy = {(;) € R? tels quex—2y=3a:—6y:0}
((5) € B w2 = 20) = (3) pour y & B} = Vecta ().

¢) Soient u; = (31 ),uz = (32) € C? et A € C.
T1+Ax i(x1+Az2)—(y1+A ix1— 1Ty —
Ona falus +dua) = £ (50452 ) = (sl ine)) = () +2 (5

= f3 () + M3 (4 ) = f3(ur) + Afs(uz).

Donc f3 € Lc(C2,C?) est bien une application linéaire.

On a Imfs = Vectc {f3(
teurs sont colinéaires ( -1

0) 3( )} = Vecte {(1), (')} = Vectr (}) car les vec-
) =4 (1) et donc engendrent une droite vectorielle.

On a Kerfs = {(5) € C? tels que ix—y:x—i—iy:O}
{( v) € C? tels que y = m} car ce sont les mémes équations
={({%) pour z € C} = Vectr (1).

d) Soient uy = (3! ),u2 = (32) € R? et A € R.
o f ( A ) f (ac e ) 3((3:1+>\x2))+5((y1+>\y2)) 3m1+25y1 i 3m2+25y2>
na u u 1 2 ) = 21 +Axz2)—2(y14+ e = | z1— To—
o ? y1tAyz (;1+)\;2)*(21+>\Z§) 2915'1—'51 2;2—52
= fa ( ) + Afa (2y

= fa(ur) + Afa(uz).
Donc f4 € Lr(R ) est bien une application linéaire.

)
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On aImfy = Vectr {fa(§),f1(9)} :VectR{(z) ) <:5%)}, un plan vectorielle.
OnaKerf, ={(y) eR?telsque 3z +5y=a -2y =220 —y =0} ={(9)}.

. z1 T2 3
e) Smentul:(gl),uQ:(gz)ER et A e R.
1 2

(z1+A22)+5(y1+Ay2)—(z1+Az2)

T1+AT2
Ona fs(ui+Auz) = fs (giigi ) = (7(21+>\x2)+2(y1+)\y2)72(z1+)\22))

M) = 5 () 0 () = folm) + M)

Donc f5 € Lg(R?,R?) est bien une application linéaire.

r14+5Yy1—21
( —x1+2y1—221 )+

1 0 0 _
On atmfs = Vectw {fs (§)./5 (1) . £ (§)} = Vectw {(11).(3). (23)} = B2,
car il y a deux vecteurs non colinéaires dans un espace de dimension 2 donc la famille
est génératrice.

OnaKerfg,:{(;Zj) ER3telsquex +5y —2=—2+2y—22=0

T 3 —(8/7)z -8
{(y)G]R tels que x = —by + z et 7y:3z}: (3/7)z pour z € R :VectR(§>.
z z

1 2

10 1 2 0
Exo 2 : On détermine la nature de la famille B = { < 3 > , (%) , ((1)) , <8> } en calculant son

0 0

rang.
On argB =4 = CardB = dimgR* donc c’est une base de 'espace.
D’apres le cours, une application linéaire est fixée de maniere unique par I'image d’une base.

1 10 1 2 0
On a donc <%> =a<%>+b<§>+c<‘1}>+d<8> avec a, b, ¢,d € R & déterminer car la

1 0 0 1 2
famille est génératrice. On doit ainsi résoudre le systéme associée a la matrice augmentée :
10 1 2 0|1 1 0 0 0] 29/39 29/
/39
1 2 0 0]1 01005/39d N [ 5730
2 1 1 01| F="F o 0 1 o] -8/13| 1) 7| 818
0 01 2|1 00 0 1|21/26 217267
1 10 1 2 0
Donc f (%) =29/39f ( 3 > +5/39 (f) —8/13 (‘f) +21/26 (8) = 31/13.
1 0 0 1 2

On a Imf = Vect g f(B) = Vectr(1,2,3,4) = R. Donc lapplication est surjective.

Soit u = (lc’) € R* exprimé dans la base B. On a f(u) = 0 ssi a + 2b + 3¢ + 4d = 0 ssi
B

d
a = —2b— 3c —4d avec b, c,d € R des parametres.
—2b—3c—4d —2 -3 —4
DoncKerf:{( b ) pourb,c,dER}zVecﬁM(é) ,(?) ,(8) }
0/8 0/8B 1/B

d B 19 ~28 —40
sveen((3)-2()-(0)-3(F)- (1) (p=veent(3)-(5)-(5)

exprimé dans la base canonique.

Exo 3: a) On étudie la famille (v, v, v3). On a vy + v3 = 2v1. Donc la famille est liée.

Si il existait une telle application linéaire alors es 4+ e3 = f(v2 + v3) = f(2v1) = 2e;.
Ainsi la famille (eq, eq,e3) est liée Absurde pour une base.

b) La famille (v1,v2) est libre. On peut la compléter en une base (v, v, u) de R?® (par
exemple u = e; convient).
Soit w € R? un vecteur quelconque, il existe une unique application f, € Lg(R?)
tel que : fu(v1) = €1, fulvs) = € et fu(u) = w. De plus, on a fu(vs) = fu(20 —
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16.2 Contexte abstrait

vg) = 2e1 — eg. Donc f,, vérifie les conditions de ’énoncé et il existe autant de telles
applications que de choix de w € R3 c’est & dire une infinité.

Exo 4: a) On dispose de la base canonique By = (1,7) de C en tant que R-ev. Donc f est
entierement déterminée par f(1) et f(i). Pour z = 2 + iy € C, on a f(z) = zf(1) +
yf(i) = Z2f(1) + Z2f(i) = f(l);”c(z)z + f(l);”c(l)é. Ainsi a = M et b =
f(l);if(i)

conviennent.

b) L’application est C-linéaire si on a de plus f(Az) = Af(z) pour A € C. Donc en
particulier, il faut f(i) = if(1). Ce fournit des simplifications : a = M = f(1)
ot b= f(l);if(i) =0.

Donc f(z) = f(1)z sont bien les seules applications C-linéaires.

Exo 5: a) Soient (un)n>0, (Vn)n>0 € RY et A € R.
On a f ((un + Avn)nzo) = ((Un+1 + )\vn+1) - (un + Av"))nZO = (un+1 - Un)nzo +
AVnt1 = Vn)n>0 = f((Un)n>0) + Af((Vn)n>0)-
Donc f est bien linéaire.

Soit (un)n>0 € RY. On a (up)n>0 € Kerf ssi (Unt1 — Un)nso0 = (0)n>0 ssi Vn €
N, Up41 — ty, = 0 ssi (up)n>0 €st constante.
Donc Kerf = {(¢)n>0 pour ¢ € R} = Vectg(1),,>0.

Puis Imf = RN, Car pour (v,)n>0 € RY, on peut définir pour tout n € N,u, =
Z% vg. Alors on a f((un)n>0) = (Un)n>0 € Imf car upi1 — up = > pgVk —
b0 Uk = Un.

b) Soit ¢ € R. Une suite géométrique vérifie u,+1 = qu, donc f(u,) = (¢ — 1)u, puis

(f—(g—1)id})(uy) = 0. Ainsi Ker [f — (g — 1) f°] est bien 'espace vectoriel des suites

de raison gq.
Exo 6: a) Pour P € R, [X], on a deg(f(P)) = deg(P+(1—X)P’) < max(deg P,1+deg P’) =
deg P < n. Donc f(P) € R,[X] et les espaces de f sont bien définies.
Soient Py, Py € Ry[X] et A € R. On a f(PL+APs) = (PL+APs)+(1— X)(PL+AP,) =
Pi+(1-X)P{+N(Py+(1—X)P)) = f(P1)+Af(P2). Donc f est bien un endomorphisme
de R, [X].
b) Soit P € Kerf. On a f(P) = 0 donc (X — 1)P’ — P = 0 est associée a I'équa-
tion différentielle linéaire homogene d’ordre 1 : y/(t) — 7y(t) = 0. Ainsi y(t) =
A(t—1) sit<l1
Ao(t—1) sit>1
miales sont P(X) = A(X — 1) pour A € R et Kerf = Vect g(X — 1).

Aexpln|t — 1| = pour A1, A2 € R. Donc les solutions polyno-

On a R, [X] = Vectg(1, X, ..., X™) donc Imf = Vect g(f(1), f(X), ..., f(X™)).

Or f(X —1) =0 donc f(X) = f(1) = 1. Puis pour k € [2,n], f(X*) = X* + k(1 -
X)Xk = (1 — k) X* + EX*1 de degré k.

Ainsi la famille (1, f(X?2), ..., f(X")) = (1, X2 +2X, ..., (1 —n) X" +nX""1) est libre
car échelonnée en degré.

Donc Imf = Vectg(1, —X2 +2X, ..., (1 — n) X" + nX"71).

16.2 Contexte abstrait

Exo 7: Pour z ¢ Ker(f"™ 1), on a f*"(z) # 0g et Vi > n, fi(z) = Op. La famille F =

(x, f(x),..., f*"1(z)) de n vecteurs dans un espace de dimension n. Donc CardF = dimg E.
Soient Ag, ..., An—1 € R tel que ZZ;; Mo f¥(x) = 0p.

On démontre par récurrence totale que Ax = 0.

it : On a 0 = f* 1(0g) = S0y Mf* H(fi(x) = S0 Mf i a) = Xof* a).

N.Provost LMB-PCSI1



16.2 Contexte abstrait

Donc Ay = 0.

Heré: Soit 0 < k <n-—1 tq Vi < k,\ =0,alors 0 = f"*"2(0g) = 2?2—01 N frk=2( ()
=0g+..+0g+ ZZ kil Z‘fn+i_k_2($6) = )\k+1f"_1($) +0g + ...+ 0g donc A\g41 =0.
Cel : Ainsi \g = ... = \,,_1 = 0 et la famille F est libre.

Par thm de caractérisation, la famille F est une base de E.

Exo 8: a) (<) On suppose qu’il existe h € L(F') tel que g =ho f.
Soit u € Kerf. Alors g(u) = h(f(u)) = h(0) = 0 donc u € Kerg.
(=) On suppose que Kerf C Kerg. On consideére un supplémentaire S de Ker f dans F
ie. E=S@®Kerf. Alors f|1mf est une application injective Kerf|1mf SNKerf =0
et surjective Imf = f(E) = f(S + Kerf) = f(S) = Im f|Kerf Donc f|ISmf est un
isomorphisme et on pose h = g o (f|§nf)_1 pour avoir g = ho f.

b) (<) On suppose qu'il existe h € L(F) tel que f = go h.

Alors Imf = f(E) = g(h(E)) C g(FE) = Img car h(F) C E.
(=) On suppose que Imf C Img. Alors de méme en considérant un supplémentaire
de Kerg dans E. On obtient g\hng est un isomorphisme et on peut poser h(u) =
(9/9")=1(f(u)) bien défini car f(u) € Imf C Img l'espace de départ de (g|a?) !
Ainsi f =goh.

Exo 9: a) On suppose par I'absurde que p = \qg. Alors p = p? = (\g)? = \2¢®> = \2q. Ainsi
Ag = p = A\q avec ¢ # 0. Donc A\? = X puis A € {0,1}. Ceci est absurde car si A = 1
alors p=¢q et si A =0 alors p = 0.

b) (<) On suppose que poq = qop = 0 alors (p+ q)?> = p>? +poqg+qop+¢*> =
p+0+4+0+4+q=p+q. Donc p + q est un projecteur.
(=) On suppose que (p+q)? =p+gqalors 0= (p+¢)?—(p+q) =p>+pog+qo
p+q¢®—p—qg=pogtqgopcarp’ =pet¢® =g Puspog=—qgop=—¢°op=
—qo(gop) =qopogq=—pogoq=—pogcarqoq=gq.
Ainsi pog= —pogdonc pog=0. Enfin gop=—poqg=0.

¢) On montre que Im(p + ¢) = Imp @ Img.
En effet, si « € Imp N Img alors u = p(u) = ¢(u) car 'image d’un projecteur est
invariante. Donc 0 = p(q(u)) = p(u) = u.
Puis pour u € Im(p + ¢) alors v = (p+ q)(u) = p(u) + g(u) € Imp + Imgq.
Réciproquement, pour u = p(z) + ¢(y) € Imp+1Img, on a (p+q)(u) = (p+q)(p(z)) +
(p+a)(a(y) = p(p(x)) + a(p(z)) + pla(y)) + a(a(y)) = p(x) + 0+ 0+ p(y) = u. Donc
u=(p+q)(u) € Im(p+q).

On démontre que Ker(p + q) = Kerp N Kerg.
Pour u € KerpNKerg, on a (p+¢q)(u) = p(u) +q(u
Réciproquement pour u € Ker(p+¢), on a p(u)+¢
p(q(uw)) = p(u) + 0 = p(u) donc u € Kerp. Et 0
donc u € Kerq. Ainsi u € Kerp N Kergq.
Exo 10 : (=) On suppose Kerf = Imf. Alors pour u € E, f2(u) = f(f(u)) =0 car f(u) € Kerf.
Et rgg(f) = dimgImf = dimgKerf = dimg F — rgg f d’apres le théoréme du rang.

)=0+0=0. Donc u € Ker(p+q).
(u) = 0. Donc 0 = p(0) = p(p(u))+
= q(u ) q(p(u)) + q(q(u)) = q(u)

(<) On suppose que f2 =0 et n = 2rg(f).

On a Imf C Kerf car pour v = f(u) € Imf, on a f(v) = f2(u) = 0 d’'ou v € Kerf.

Puis le théoreme du rang donne rg(f) + dimkery = n = 2rg(f) donc dimKerf = rgf =
dimImf.

Ainsi par dimension les espaces vectoriels Kerf = Imf.

Exo11: a) On a Im(f + g) C Imf + Img car pour v = (f + g)(u) € Im(f + g) alors v
f(u) + g(u) € Imf + Img. Done rg(f + g) = dimgIm(f + ¢g) < dimg(Imf + Img) =
dimgImf + dimgImg — dimg (Im f N Img) d’apres la formule de Grassmann
< dimgImf + dimgImg = rgf + rgg.
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16.2 Contexte abstrait

b) On arg(f) =rg(Af) = rg(\f + g — g) <1g(Mf +g) +18(—9) = r8(\f + 9) +18(9)-
Donc rg(f) —rg(g) < rg(Af +g).
Puis rg(g) = rg(Af + 9 — Af) S 18(Af +9) +18(=Af) =18(Af + 9) +18(f).
Ainsi rg(g) —rg(f) < rg(Af +9).
Donc |rg(f) —rg(g)| < rg(Af + g) complete I'inégalité triangulaire sur les rangs.

Exo 12: a) Soient (ui,u2), (vi,v2) € F1 X Eg et A € K.

On a f(uy + Aug,vi + Avg) = up + Aug + v + Avg = (u1 + v1) + Mug + v2) =
f(u1,v1) + Af(uz,v2). Donc f est bien linéaire.

b) Soit (u1,us) € E1 X Es. On a (uy,us) € Kerf ssi ug +ug = 0 8si u; = —ug € F1 N Es.
Donc Kerf = {(u, —u) pour u € E; N Ex}.
Par définition, on a f(F; x E2) = {u; + us pour u; € E; et ug € Es} = Ey + Es.

¢) Le théoréme du rang montre que dimg (E; x Ey) = dimg ker f+dimgIm f = dimg (E1 N
E2) + dlm]K(El + EQ) Or dlmK(El X EQ) = dimKEl —+ dlmKEQ
Donc on obtient la formule de Grassmann : dimg(Eq + Eo) = dimg Fy + dimg Fy —
dimK(El n EQ)

Exo13: a) Pourv € E, on pose u =v — (go f)(v) € E. On a f(u) = f(v) — f(g(f(v))) =

f(v) — f(v) =0p. Donc u € Kerf.

b) Soit u € Ker/f NTm(g o f) alors u = (g o )(v) puis Op = f(u) = f(g(f(v))) = F(u)
donc u = g(f(v)) = g(0p) = 0p. Ainsi Kerf NIm(go f) = {0g}.
Soitve E,onav=[v—(go f)(v)]+ (g0 f)(v) € Kerf +Im(go f) d’apres a)

¢) On peut en déduire dimg E = dimgKer f + dimgIm(g o f) = dimgKerf + rg(g o f).
Puis le théoréme du rang donne également dimgE = dimgKerf + rg(f).
On en déduit donc rg(g o f) = rgf. Puis rg(g o f) < min(rgf,rgg) < rg(g) d’apres le
cours. Donc rg(f) < rg(g).

Exo 14: a) Soit D une droite supplémentaire de H alors E = D @ H donc n = 1 + dimH.
Ainsi les hyperplans sont de dimension n — 1.
Pour deux hyperplans distincts, on an—1 = dimH; < dim(H; + Hz) < n car on a les
inclusions Hy; & (H;+Hsz) C E. Donc dim(H;+Hs) = n puis la formule de Grassmann
montre que dim(Hy N Hy) = dimH; +dimHy —dim(H,+ Hz) = (n—1)+(n—1)—n =
n—2.

b) Pour f : E — R non nulle. On a {0} & Imf C R donc rgf = dimImf = 1. D’aprés
le théoréme du rang, on en déduit dimKerf = dimE —rgf = n — 1. C’est donc un
hyperplan de F.

¢) Soit H un hyperplan de E et D un droite supplémentaire. On introduit d € D un
vecteur directeur (i.e. non nul) de D. Pour v € E, on a une unique écriture u = hy,+A,d
car E = H @ Vect (d). Donc on peut construire l'application f : E — R,u+— A,. Clest
bien une application linéaire. Et f(H) = {0} donc H C Kerf. D’apres ce qui précede
on a également dimH = n — 1 = dimKerf. Donc H = Kerf est bien le noyau d’une
forme linéaire (i.e. une application linéaire & valeurs dans K)

Exo 15: a) On almf C R? donc rgf = dimImf < 2 cad rg(f) € {0,1,2}.

b) Pour u € E, on note f(u) = (fz(u), fy(v)) € R? avec f,(u) € R et fy(u) € R. On a
p1(f(u)) = fo(u) et pa(f(u) = fy(u).

Puis u € Kerf ssi f(u) = (0,0) ssi fy(u) = fy(u) = 0 ssi p1(f(uw)) = p2(f(w)) = 0 ssi
u € Ker(py o f) NKer(ps o f).
Donc Ker(f) = Ker(py o f) NKer(pz o f)

c) Onaalors Imf = Vectr (j ) car de dimension 1. Donc on a bpyo f —apzo f = 0z, (g r)-
En effet, pour u € E, f(u) = A, (). Donc p1 o f(u) = Aya et pao f(u) = A,b. Puis on
trouve bien bp; o f(u) — aps o f(u) = 0.

d) Si f est surjective alors rg(f) = dimR? = 2 donc d’apres le théoréme du rang
dimKerf = dimFE —rgf =n — 2.

Réciproquement pour F un espace de dimension n — 2. D’apres l’exercice précédent,
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F' est l'intersection de deux hyperplans Hy et Hs. Puis H; = Kerf; et Hy = Kerfs.
Donc en posant f(u) = (f1(u), f2(u)). On obtient Kerf = Kerf; N Kerfy, = Hy N Ho.
Avec dimKerf = n—2 donc rgf = dimFE — dimKer f = 2 d’apres le théoréme du rang.
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