
19.1 Recherche d’équivalent

TD 19 - Corrigé

19.1 Recherche d’équivalent

Exo 1 : a) On a n4 + 3n2 − 5 ∼+∞ n4 car 1 =+∞ o(n4) et n2 =+∞ o(n4).

b) On a 3n − n3 + 10 ∼+∞ 3n car 1 =+∞ o(3n) et n3 =+∞ o(3n)

c) On a lnn(n) + 3n − n9 ∼+∞ lnn(n) car n9 =+∞ o(3n) et 3n =+∞ o(lnn(n)).

En effet
lnn(n)

3n
=

(
ln(n)

3

)n

≥ 2n → +∞ pour n ≥ e6.

d) On a
3n + 2nn2

ln2(n)− n2
∼+∞

3n

−n2
.

Car
2nn2

3n
=

(
2

3

)n

n2 → 0 donc 2nn2 =+∞ o(3n).

Et ln2(n) =+∞ o(n2).

e) On a ln(1 + n) ln(1 +
1

n
) ∼+∞ ln(n)

1

n
=

lnn

n
. Car ln(1 + x) ∼x→0 x.

f ) On a
√
4n+ 1− 2

√
n = 2

√
n((1 + 1/(4n))1/2 − 1)

=+∞ 2
√
n

(
1 +

1

2

1

4n
+ o

(
1

n

)
− 1

)
∼+∞

√
n

4n

Et
√
(n+ 1)3 − n

√
n = n3/2

(
(1 + 1/n)3/2 − 1

)
=+∞ n3/2

(
(1 +

3

2

1

n
+ o

(
1

n

)
− 1

)
∼+∞

3

2
n1/2.

Donc

√
4n+ 1− 2

√
n√

(n+ 1)3 − n
√
n
∼+∞

n−1/2/4

3n1/2/2
=

1

6n
.

g) On a 1 + an + nα ∼+∞

{
an si a > 1

nα si a ≤ 1

Et lnβ +nα ∼+∞ nα car α > 0.

Donc
1 + an + nα

lnβ n+ nα
∼+∞


an

nα
si a > 1

1 si a ≤ 1
.

h) On a
√
n4 + 3n− n2 = n2

(
(1 + 3/n3)1/2 − 1

)
= n2

(
1 +

1

2

3

n3
+ o

(
1

n3

)
− 1

)
∼+∞

1

6n
.

i) On a ln(1 + x) ∼x→0 x et 1− ex ∼x→0 −x.

Donc 1− e2 ln(1+ 1
n ) =+∞ 1− e2/n+o(1/n) ∼+∞

−2

n

j) On a ln

(
n+

1

n5

)
− lnn = lnn+ ln(1 + n−6)− lnn = ln(1 + n−6) ∼+∞

1

n6

k) On a sin

(
1− cos

1

n

)
∼+∞ 1− cos

1

n
car sinx ∼x→0 x.

Puis cosx = 1− x2/2 + o(x3) donc 1− cos
1

n
∼+∞

1

2n2
.

l) On note xn =
1

n
→ 0. On a ln(cos

1

n
)+cos(tan

2

n
)−1 = ln(cosxn)+cos(tan(2xn))−1

=xn→0 ln(1− x2
n/2 + o(x3

n)) + cos(2xn + o(x2
n))− 1

=xn→0 −x2
n/2 + o(x3

n)) + 1− (2xn)
2/2 + o(x2

n))− 1 ∼xn→0 −5

2
xn =+∞ − 5

2n
.

m) On a sin ln

(
1 +

1

2n2

)
∼+∞ ln

(
1 +

1

2n2

)
∼+∞

1

2n2
.
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19.2 Recherche d’équivalent de suite autonome

Exo 2 : On a eun − evn = evn(eun−vn − 1) ∼ e0(un − vn) car vn → 0 et (un − vn) → 0.

19.2 Recherche d’équivalent de suite autonome

Exo 3 : a) On a un+1 − un =
u2
n + 1− 2un

2
=

(un − 1)2

2
≥ 0. Donc la suite est croissante.

En posant f(x) =
1 + x2

2
croissante sur ]0, 1[. On trouve f(]0, 1[) =]f(0), f(1)[=

]1/2, 1[. Donc l’intervalle est stable par f et par récurrence ∀n ∈ N, un ∈]0, 1[.
D’après le théorème de la limite monotone, la suite est croissante et majorée. Donc
elle converge vers l ∈]0, 1] un point fixe. Puis f(l) = l ssi l = 1.

b) On note vn =
1

un+1 − 1
− 1

un − 1
=

2

u2
n − 1

− 1

un − 1

=
2− (un + 1)

(un − 1)(un + 1)
=

−1

un + 1
→ −1

2
.

c) D’après le Lemme de Cesàro

n−1∑
k=0

vk ∼n→+∞ −n/2.

Or

n−1∑
k=0

vk =
1

un − 1
− 1

u0 − 1
∼+∞

1

un − 1
par télescopage.

Donc un − 1 ∼ −2

n
. C’est à dire un = 1− 2

n
+ o

(
1

n

)
.

Exo 4 : a) Pour n ≥ 1, on écrit n = k + 1. On a uk+1 − 2 =
u2
k − 2uk + 1

uk
=

(uk − 1)2

uk
≥ 0.

Donc un = uk+1 ≥ 2 > 1.

b) On a un+1 − un =
1

un
> 0 donc la suite est croissante.

c) On suppose par l’absurde que un est majorée alors elle admet une limite finie l ≥ 1 tel
que l = l + 1/l donc 1/l = 0 est absurde. Puis la suite est croissante et non majorée
donc un → +∞.

d) On a vn = u2
n+1 − u2

n = (un + 1/un)
2 − u2

n = 2 + 1/u2
n → 2 car 1/u2

n → 0.

e) D’après le lemme de Cesàro u2
n = u2

0 +

n−1∑
k=0

vk ∼+∞ u0 + 2n ∼ 2n.

Donc un ∼+∞
√
2n.

Exo 5 : a) On a un+1 − un = e−un ≥ 0. Donc la suite est croissante. Si il est majorée alors
elle tend vers l ∈ R tel que l = l + e−l. Or e−l = 0 est absurde. Donc (un)n≥0 est
croissante et non majorée. Puis un → +∞.

b) On note vn = eun+1 − eun = eun (exp(un+1 − un)− 1)
= eun

(
exp(e−un)− 1

)
= eun

(
1 + e−un + o(e−un)− 1

)
car e−un → 0.

= 1 + o(1) → 1.

c) On en déduit eun = eu0 +

n−1∑
k=0

vk ∼ eu0 + 1.n ∼ n = n+ o(n).

Donc un = ln(eun) = ln(n+ o(n)) = ln(n) + ln(1 + o(1)) = ln(n) + o(1) ∼ ln(n).

Exo 6 : a) On a u1 = sin(u0) ∈]0, 1] qui est un intervalle stable par sin.
Donc pour tout n ≥ 1, un ∈]0, 1].
On note g(x) = sinx− x dérivable sur ]0, 1] avec g′(x) = cosx− 1 < 0.
Ainsi g est décroissante et g(x) < g(0) = 0.
Donc un+1 − un = g(un) < 0 pour n ≥ 1 et la suite est décroissante.

Elle converge vers un point fixe tel que g(l) = l et l ∈ [0, 1] donc l = 0.
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19.3 Développement limité

b) On a un+1 − un = sin(un)− un = un − u3
n/6 + o(u4

n)− un ∼ −u3
n

6
.

c) On a vn =
1

u2
n

− 1

u2
n+1

=
u2
n+1 − u2

n

u2
nu

2
n+1

∼ (un+1 − un)(un+1 + un)

u4
n

car un+1 ∼ un

∼ (−u3
n/6)(2un)

u4
n

= −1

3
.

Donc vn → −1

3
.

d) On a
1

u2
n

=
1

u2
0

−
n−1∑
k=0

vk ∼ n

3
. Donc un ∼

√
3/n.

19.3 Développement limité

Exo 7 : a) On a exp(sinx) = exp(x− x3/6 + o(x3))
=x→0 1 + (x− x3/6) + (x− x3/6)2/2 + (x− x3/6)3/6 + o(x3)
=x→0 1 + x+ x2/2 + o(x3)

b) On a ln(cosx) = ln(1− x2/2 + x4/24 + o(x4))
=x→0 −(x2/2− x4/24)− (x2/2)2/2 + o(x4)
=x→0 −x2/2− x4/12 + o(x4)

c) On a
1

1− x2 − x3

=x→0 1 + (x2 + x3) + (x2 + x3)2 + o(x5)
=x→0 1 + x2 + x3 + x4 + 2x5 + o(x5)

d) On a (1 + x)x = exp(x ln(1 + x))
=x→0 exp[x(x− x2/2 + x3/3 + o(x3)]
=x→0 1 + [x2 − x3/2 + x4/3] + [x2]2/2 + o(x4)
=x→0 1 + x2 − x3/25x4/6 + o(x4)

e) ln

[
1 + tanx

1− tanx

]
= ln(1 + tanx)− ln(1− tanx) = f(x)− f(−x).

On a f(x) = ln(1 + tanx) =x→0 ln(1 + x+ x3/3 + o(x4))
=x→0 (x+ x3/3)− (x+ x3/3)2/2 + x3/3− x4/4 + o(x4)
=x→0 x− x2/2 + 2x3/3− 7x4/12 + o(x4)
Donc f(x)− f(−x) =x→0 2x+ 4x3/3 + o(x3).

f ) On pose f(x) = Arctan

(
1 + x

1 + 2x

)
de classe C∞ au voisinage de 0.

On a f ′(x) =
[(1 + 2x)− 2(1 + x)]/(1 + 2x)2

1 + (1 + x)2/(1 + 2x)2

=
−1

(1 + 2x)2 + (1 + x)2
=

−1

2 + 6x+ 5x2

=
−1

2

1

1 + 3x+ 5x2/2

=x→0
−1

2
(1− (3x+ 5x2/2) + (3x)2 + o(x2))

=x→0 (−1/2) + (3/2)x− (13/4)x2 + o(x2)
Donc en primitivant f(x) =x→0 f(0)− x/2 + 3x2/4− 13x3/12 + o(x2)
avec f(0) = Arctan (1) = π/4.

Exo 8 : a) On a xa lnx →x→0 0 et x2 − 1 →x→0 −1 donc lim
0

fa = 0 et la fonction se prolonge

par continuité en 0.

On note x = 1 + h au voisinage de 1. On a fa(1 + h) =
(1 + h)a ln(1 + h)

(1 + h)2 − 1
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19.3 Développement limité

=
(1 + ah+ o(h))(h− h2/2 + o(h2))

2h+ h2
=

h(1 + (a− 1/2)h+ o(h))

2h(1 + h/2)
→ 1

2
.

Donc la fonction se prolonge par continuité en 1.

b) Le développement limité en 1 donne :

f(1 + h) =h→0
1

2
(1 + (a− 1/2)h+ o(h))(1− h/2 + o(h)) =

1

2
(1 + (a− 1)h+ o(h)).

Donc f est dérivable en 1 et f ′(1) =
a− 1

2
.

La définition de la dérivabilité en 0 donne :
fa(x)− fa(0)

x− 0
=

xa−1 lnx

x2 − 1
→

{
0 si a− 1 > 0

+∞ si a− 1 ≤ 0
.

Donc fa est dérivable en 0 ssi a > 1.

Exo 9 : a) On réalise le développement limité de
sinx

2 + cosx
:

sinx

2 + cosx
=x→0

x− x3/6 + x5/120 + o(x6)

2 + 1− x2/2 + x4/24 + o(x5)

=x→0
x

3
(1− x2/6 + x4/120 + o(x5))

1

1− (x2/6− x4/72 + o(x5))

=x→0
x

3
(1− x2/6 + x4/120 + o(x5))(1 + (x2/6− x4/72) + (x2/6)2 + o(x5))

=x→0
x

3
(1 + (1/120− 1/72 + 1/36− 1/36)x4 + o(x4))

=x→0
x

3
− x5

540
+ o(x5).

Donc
sin(x)

2 + cos(x)
− x

3
∼ − x5

540

b) On a (Arcsinx)′ =
1√

1− x2
= (1− x2)−1/2 =x→0 1− 1

2
(−x2) +

3

8
x4 + o(x5)

Donc Arcsinx = 0 + x+ x3/6 + 3x5/40 + o(x6)

Et tan tanx =x→0 tan(x+ x3/3 + o(x4))
=x→0 (x+ x3/3) + (x)3/3 + o(x4) =x→0 x+ 2x3/3 + o(x4).

Donc tan(tanx)−Arcsinx =x→0 2x3/3− x3/6 + o(x4)
∼x→0 x3/2.

c) On a x3 3
√
x− 1 + x3 = x3(1− (1− x)1/3) =x→0 x3(1− (1− x/3 + o(x)))

∼x→0 x4/3.

Exo 10 : a) On a x− sinx =x→0 x− (x− x3/6 + o(x3)) ∼x→0 x3/6.
Et sh 3x ∼x→0 x3.

Donc
x− sinx

sh 3x
∼x→0

x3/6

x3
→ 1

6

b) On pose x =
1

h
pour h → 0+.

On a f(x) = x

(
1 +

1

x

)x

− ex2 ln

(
1 +

1

x

)
=

1

h
(1 + h)1/h − e

h2
ln(1 + h)

=h→0
1

h
exp

[
1

h
ln(1 + h)

]
− e

h2
(h− h2/2 + o(h2))

=h→0
1

h
exp(1− h/2 + o(h))− e

h
+

e

2
+ o(1)

=h→0
e(1− h/2 + o(h))

h
− e

h
+

e

2
+ o(1) = o(1).

Donc f(x) →x→+∞ 0.

c) On pose x = π/2 + h avec h → 0.
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19.4 Avec recherche d’idées

On a g(x) =
2

cos2 x
+

1

ln sinx

=
2

sin2 h
+

1

ln cosh

=
2 ln cosh− sin2 h

sin2 h ln cosh
.

Or ln cosh =h→0 ln(1− h2/2 + h4/24 + o(h4))
=h→0 (h2/2− h4/24) + (h2/2)2 + o(h4)
=h→0 h2/2 + 5h4/24 + o(h4)

Et sin2 h =h→0

(
h− h3/6 + o(h3)

)2
= h2 − h4/3 + o(h4).

Donc 2 ln cosh− sin2 h ∼h→0 3/4h4

puis g(π/2 + h) ∼h→0
3h4/4

h2h2/2
→ 3

2
.

19.4 Avec recherche d’idées

Exo 11 : a) On a tan′(x) = 1 + tan2 x.
En partant de tanx =x→0 x+ x3/3 + 2x5/15 + o(x6), on en déduit :
tan′(x) =x→0 1 + (x+ x3/3 + 2x5/15)2 + o(x6)
=x→0 1 + x2 + 2x4/3 + (1/9 + 4/15)x6 + o(x6).

Puis en primitivant on trouve :
tanx =x→0 x+ x3/3 + 2x5/15 + 11x7/315 + o(x7).

b) De même la formule th ′(x) = 1− th 2(x) et thx ∼x→0 x.

On trouve th ′(x) =x→0 1− x2 + o(x2)
donc th (x) =x→0 x− x3/3 + o(x3).

En trois étapes on abouti à :

th (x) =x→0 x− x3/3 + 2x5/15− 11x7/315 + o(x7).

Exo 12 : On réalise le développement limité de :
a+ bx2

1 + cx2

=x→0 (a+ bx2)(1− cx2 + c2x4 − c3x6 + o(x6))
=x→0 a+ (b− ac)x2 + (ac2 − bc)x4 + (bc2 − ac3)x6 + o(x6).

Donc l’ordre est maximal lorsque


a = 1

b− ac = −1/2

ac2 − bc = 1/24

On obtient a = 1, b = −5/12 et c = 1/2.

Dans ce cas, f(x) ∼x→0 (bc2 − ac3)x6 =
−x6

288
.

Exo 13 : La fonction f est de classe C∞ par opération sur ]− 1,+∞[.
Pour x > −1, on a f ′(x) = (x+ 1)ex > 0.
Donc f est strictement croissante et continue donc elle réalise une bijection de ] − 1,+∞[
vers f(]− 1,+∞[) =]− 1/e,+∞[.
De plus f est C∞, f ′ ne s’annule pas et f est bijective.
Donc f−1 est C∞ sur ]− 1/e,+∞[.

On a f−1(0) = 0 car f(0) = 0.
Puis f(x) =x→0= x+ x2 + o(x2)
et f−1(y) =y→0 0 + ay + by2 + o(y2)
doivent vérifier f−1(f(x)) = x.
Donc f−1(f(x)) = a(x+ x2) + b(x+ x2) + o(x2) = ax+ (a+ b)x2 + o(x2) = x.
Par unicité du développement limité, on trouve a = 1 et b = −1.

N.Provost LMB-PCSI1



19.5 Problèmes

Exo 14 : a) On a f de classe C∞ sur R et f ′(x) =
2x

1 + x2
− 1 =

−(1− x)2

1 + x2
< 0.

Donc f est continue et strictement décroissante. D’après le théorème de la bijection
continue, f réalise une bijection de R dans R.
En effet lim

+∞
f = −∞ et lim

−∞
f = +∞.

b) On a f(x) = ln(1 + x2)− x =x→0 (x2 − x4

2
+ o(x4))− x

=x→0 −x+ x2 − x4

2
+ o(x4).

c) La fonction f est de classe C∞ et f ′ ne s’annule pas au voisinage de 0 donc f−1 est
également de classe C∞ au voisinage de f(0) = 0. D’après la formule de Taylor-Young,
il existe un DL f−1(y) =y→0 ay + by2 + cy3 + dy4 + o(y4).
On obtient x = f−1(f(x))
=x→0 a(−x+ x2 − x4/2) + b(−x+ x2)2 + c(−x+ x2)3 + d(−x)4 + o(x4)
=x→0 −ax+ (a+ b)x2 + (−c− 2b)x3 + (−a/2 + b+ 3c+ d)x4 + o(x4)

Donc a = −1, b = 1, c = −2 et d =
9

2
.

Exo 15 : a) On a f(x) = o(x2) car
f(x)

x2
= x sin(1/x) →x→0 0. Donc f admet un DL2(0).

Si par l’absurde, f admet un DL3(0) alors f(x) = cx3 + o(x3) car on peut le tronquer
en f(x) = 0 + o(x2).

Donc
f(x)

x3
→x→0 c. Or

f(x)

x3
= sin(1/x) n’admet pas de limite en 0. Absurde.

b) On a f(x) =x→0= 0 + 0x+ o(x). Donc f se prolonge de classe C1 en 0 avec f(0) = 0
et f ′(0) = 0.

c) Soit x ̸= 0. On a f ′(x) = 3x2 sin(1/x)− x cos(1/x).

Donc
f ′(x)− f ′(0)

x− 0
= 3x sin(1/x)− cos(1/x) ∼x→0 − cos(1/x) n’admet pas de limite.

Donc f ′ n’est pas dérivable en 0.
Ainsi f n’est pas prolongeable de classe C2 malgré l’existence d’un DL2(0).

19.5 Problèmes

Exo 16 : a) On a Arctan
√
x =x→0

n∑
k=0

(−1)k

2k + 1
(
√
x)2k+1 + o(

√
x
2n+2

)

=x→0

√
x

n∑
k=0

(−1)k

2k + 1
xk + o(xn+1)

Donc f(x) =x→0 (1 + x)

n∑
k=0

(−1)k

2k + 1
xk + o(xn) est un DLn(0).

b) A l’ordre 1 on trouve : f(x) =x→0 (1 + x)(1− x/3) + o(x) = 1 +
2

3
x+ o(x).

Donc f est prolongeable de classe C1 en posant f(0) = 1 et f ′(0) =
2

3
.

c) On pose g(x) =
1 + x2

x
Arctan (x) de classe C∞ sur R∗.

On a g′(x) = (
−1

x2
+ 1)Arctan (x) +

1 + x2

x

1

1 + x2

=
(x2 − 1)Arctan (x) + x

x2

=
x2 − 1

x2
(Arctan (x) +

x

x2 − 1
).
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19.5 Problèmes

Puis on étudie h(x) = Arctan (x) +
x

x2 − 1
de classe C∞ sur R− {−1, 1}.

h′(x) =
1

1 + x2
+

(x2 − 1)− 2x2

(x2 − 1)2

=
(x4 − 2x2 + 1)− (x4 + 2x2 + 1)

(1 + x2)(x2 − 1)2

=
−4x2

(1 + x2)(x2 − 1)2
≤ 0.

Donc h est décroissante avec h(0) = 0, lim
1−

h = −∞, lim
1+

h = +∞ et lim
+∞

h = π/2.

Donc h < 0 sur ]0, 1[ et h > 0 sur ]1,+∞[.
Puis g′ > 0 sur R+ donc g croissante.
Puis f(x) = g(

√
x) donc f est croissante sur R+.

d) On pose h =
1√
x
→ 0.

On a f(1/h2) =
1 + (1/h)2

(1/h)
Arctan (1/h)

=
1 + h2

h
(π/2−Arctan (h)) car tan(π/2− θ) =

1

tan θ

=h→0 (
1

h
+ h)(π/2− h+ o(h))

=h→0
π

2h
− 1 +

π

2
h+ o(h).

Donc f(x) =x→+∞
π

2

√
x− 1 +

π

2
√
x
+ o(

1√
x
).

Exo 17 : a) fn est de classe C∞ sur R, f ′
n(x) = ex + 2x− n et f ′′

n (x) = ex + 2 > 0.

Donc f ′
n est strictement croissante et continue sur R.

Elle réalise une bijection de R vers f ′
n(R) =]−∞,+∞[ en calculant les limites.

Donc il existe un unique xn ∈ R tel que f ′
n(xn) = 0.

Pour x < xn, f
′
n(x) < f ′

n(xn) = 0 donc fn est strictement décroissante sur ] −∞, xn[
et de de même fn est strictement croissante sur ]xn,+∞. Donc fn atteint en xn un
minimum global égale à µn = fn(xn).

b) Puis f ′
n(lnn) = elnn + 2 lnn− n = 2 lnn > 0 = f ′

n(xn) donc xn < lnn.
On a f ′

n(xn) = 0 donc exn + 2xn − n = 0

puis xn = ln(n− 2xn) = lnn+ ln(1− 2
xn

n
)

=+∞ lnn− xn

n
+ o(xn/n) car 0 ≤ xn/n < lnn/n → 0.

Donc xn ∼+∞ lnn.

c) On a µn = fn(xn) = exn + x2
n − nxn

=+∞ elnn+o(lnn) + (lnn+ o(lnn))2 − n(lnn+ o(lnn))
=+∞ neo(1) + (ln2 n+ o(ln2 n))− n lnn+ o(n lnn)
=+∞ (n+ o(n)) + (ln2 n+ o(ln2 n))− (n lnn+ o(n lnn))
∼+∞ −n ln par croissance comparée.
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