
13.1 Arithmétique sur K[X]

TD 13 : Les polynômes

13.1 Arithmétique sur K[X]

Exo 1 : Réponse :

On note A = BQ+R le résultat des divisions euclidiennes.

a) Q = 3X3 − 6X2 + 3X + 16 et R = −41X − 47.

b) Q = 3X2 + 2X − 3 et R = −9X2 −X + 7.

c) Q = X2 +X − 2 et R = −7X + 6.

d) Q = X3 − 2X2 − 14X − 63 et R = 261− 268X.

Exo 2 : Indication :

On peut appliquer l’algorithme d’Euclide.

Réponse :

a) PGCD = X − 2

b) PGCD = 1

c) PGCD = X3 + 1

d) PGCD = (X − 1)2.

13.2 Multiplicité des racines

Exo 3 : Indication :

La multiplicité est par définition le plus grand entier m ∈ N tel que (X − α)m|P (X).

Dans la pratique, on utilise plutôt la caractérisation par l’annulation des dérivées :

P (α) = P ′(α) = ... = P (m−1)(α) = 0 et P (m)(α) ̸= 0

Réponse :

a) On a mult1P = 3 car P (1) = P ′(1) = P ′′(1) = 0 et P (3)(1) ̸= 0.

b) On a mult2P = 4 car P (2) = P ′(2) = P ′′(2) = P (3)(2) = 0 et P (4)(2) ̸= 0.

Exo 4 : Solution :

Par l’absurde, on introduit α ∈ C une racine au moins double. On a donc P (α) = P ′(α) = 0.

Or P ′(X) =
∑n

k=0
kXk−1

k! =
∑n

k=1
Xk−1

(k−1)! =
∑n−1

k=0
Xk

k! .

Donc P (α)− P ′(α) = αn

n! = 0. Puis αn = 0 donc α = 0.
Absurde car P (0) = 1 et 0 n’est pas une racine.

Exo 5 : Indication :

Les racines doubles sont solutions de P (z) = P ′(z) = 0.
On recherche les racines de P ′ qui ne dépendent pas de a. On réalise la synthèse en vérifiant
si c’est également une racine de P .

Solution :

On recherche les racines de P ′ = 7(X + 1)6 − 7X6.

Pour z ∈ C∗, on a P ′(z) = 0 ssi (z + 1)6 = z6

ssi z+1
z ∈ U6

ssi ∃ω ∈ U6, z + 1 = ωz
ssi ∃ω ∈ U6 − {1}, z = 1

ω−1 .

Donc P admet une racine double si il existe ω ∈ U6 − {1} tel que P
(

1
ω−1

)
= 0

ssi a = (z + 1)7 − z7 = z6[(z + 1)− z] car (z + 1)6 = z6
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13.3 Equation polynomiales

ssi a = z6 = 1
(ω−1)6 =

(
1

e2ikπ/6−1

)6

=
(

e−ikπ/6

2i sin(kπ/6)

)6

= (−1)k

−64 sin6(kπ/6)
pour k ∈ J1, 5K.

Donc les solutions sont a ∈
{
1, −1

27 ,
1
64

}
.

Exo 6 : Réponse :

On calcul l’ordre d’annulation des dérivées P (1) = P ′(1) = 0 et P ′′(1) = (n + 1)n ̸= 0.
Donc mult1P = 2.

13.3 Equation polynomiales

Exo 7 : Indication :

On commence par déterminer le degré du polynôme solution avant de déterminer ses coef-
ficients. On peut l’écrire P = aXn +Q avec a ̸= 0 le coefficient dominant,n ∈ N le degré et
Q de degré strictement inférieur à n.

Solution :

a) On écrit P = aXn+Q avec a ̸= 0 le coefficient dominant,n ∈ N le degré et Q de degré
strictement inférieur à n.

On a P ′ + XP = aXn + Q + anXn + XQ′ = a(n + 1)Xn + Q + XQ′. On sait que
a(n+1) ̸= 0. Donc en identifiant les plus haut degré, on a n = 2 et a(n+1) = 1. Ainsi
a = 1

3 et en posant Q = bX + c, on trouve :
(1/3X2 + bX + c) +X(2/3X + b) = X2 + 2bX + c. Donc b = 0 et c = 1.

Donc l’unique solution polynomiale est P = 1
3X

2 + 1.

b) De la même manière, on écrit P = aXn +Q.

On a X2P ′′ + 2XP ′ − 2P = [an(n− 1)Xn +X2Q′′] + 2[anXn +XQ′]− 2[aXn +Q]
= a[n(n− 1) + 2n− 2]Xn + [X2Q′′ + 2XQ′ − 2Q].
Donc on a n(n− 1) + 2n− 2 = 0 càd n2 + n− 2 = 0 puis n ∈ {1,−2}
. Ainsi n = 1 et P = aX + b.
L’équation s’écrit alors 0 + 2Xa− 2aX − 2b = 0 d’où b = 0.

Donc les polynômes P = aX pour tout a ∈ R sont les solutions polynomiales de
l’équation.

Exo 8 : Indication :

On peut raisonner avec le polynôme Q(X) = P (X)−1 qui admet plusieurs racines connues.

Autre méthode, on peut introduire les coefficients de P et résoudre le système linéaire à 4
inconnues et 4 équations.

Solution :

On sait que 0 est une racine au moins double et 1 est une racine de P (X)− 1.
Donc P (X)− 1 = aX2(X − 1) avec a ∈ C car P est de degré au plus 3.
Puis P ′(X) = a[3X2 − 2X] et P ′(1) = −1 donne a = −1.

Ainsi P (X) = −X2(X − 1) + 1 = −X3 +X2 + 1.

13.4 Factorisation des polynômes

Exo 9 : Indication :

Pour factoriser un polynôme sur R[X], on utilise la méthode suivante :

1. On recherche les racines complexes, z ∈ C tel que P (z) = 0.

2. On détermine leurs multiplicités. Deux cas se produisent :
- Si on a trouver n racines d’un polynôme de degré n alors les racines sont simples.
- Sinon il existe une racine multiple, on regarde si P ′(z) = 0.

3. On en déduit la factorisation sur C[X], P (X) = an
∏
(X − z)mz . Puis la factorisation

sur R[X] en regroupant les conjugués avec (X − z)(X − z̄) = X2 − 2Re(z)X + |z|2 .
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13.4 Factorisation des polynômes

Solution :

a) Soit z ∈ C. On a P (z) = 0 ssi z6 = −1 = eiπ ssi ∃ω ∈ U6, z = ωeiπ/6.

On a trouvé 6 racines distincts d’un polynôme de degré 6 donc elles sont simples.

Donc X6 + 1 = (X − i)(X + i)(X − eiπ/6)(X − e−iπ/6)(X − e5iπ/6)(X − e−5iπ/6)
= (X2 + 1)(X2 −

√
3X + 1)(X2 +

√
3X + 1)

b) Soit z ∈ C− {1}. On a z5 + z4 + z3 + z2 + z + 1 =
∑5

k=0 z
k = z6−1

z−1 .

Donc P (z) = 0 ssi (z6 = 1 et z ̸= 1) ssi z ∈ U6 − {1}.
On a trouvé 6 racines distincts d’un polynôme de degré 6 donc elles sont simples.

On a X5 +X4 +X3 +X2 +X + 1 = (X + 1)(X − j)(X − j2)(X + j)(X + j2)
= (X + 1)(X2 −X + 1)(X2 +X + 1)

c) On peut remarquer que 1 est une racine de P (X) = X3 − 2X2 + 2X − 1.
Puis P (X) = (X − 1)(X2 −X + 1) = (X − 1)(X + j)(X + j2).
Ainsi P (X) = (X − 1)(X2 −X + 1) est la factorisation sur R[X].

d) On peut remarquer que 2 est racine de P (X) = X3 −X2 − 8X + 12.
On calcul P (2) = P ′(2) = 0 et P ′′(2) = 10 ̸= 0. Donc 2 est racine double.
Donc P (X) = (X − 2)2(X + 3) en factorisant.

e) Soit z ∈ C∗. On a (z2 − 3z + 2)2 + z2 = 0 ssi
(

z2−3z+2
z

)2

= −1 = i2

ssi z2 − 3z + 2 = iz ou z2 − 3z + 2 = −iz
ssi z2 − (3 + i)z + 2 = 0 ou z2 − (3− i)z + 2 = 0

Le discriminant de la première équation est ∆ = (3 + i)2 − 8 = 6i = 6eiπ/2.
Donc δ =

√
6eiπ/4 =

√
3(1 + i) convient.

Puis les racines sont z1 = 3+i+
√
3(1+i)
2 et z2 = 3+i−

√
3(1+i)
2 . Leurs conjugués sont les

racines de la seconde équation z2 − (3− i)z + 2 = 0.

On a trouvé 4 racines distincts d’un polynôme de degré 4 donc elles sont simples.

On a (X2 − 3X + 2)2 +X2 = (X − z1)(X − z2)(X − z̄1)(X − z̄2)
= (X2 − (3 +

√
3)X + 4 + 2

√
3)(X2 − (3−

√
3)X + 4− 2

√
3).

En effet Re(z1) =
3+

√
3

2 et |z1|2 = 1
4

(
(3 +

√
3)2 + (1 +

√
3)2

)
= 4 + 2

√
3.

Et Re(z2) =
3−

√
3

2 et |z2|2 = 1
4

(
(3−

√
3)2 + (1−

√
3)2

)
= 4− 2

√
3.

f ) Pour z ∈ C, on a z8 + z4 + 1 = z12−1
z4−1 . D’où z ∈ U12 − U4

Donc on a trouvé 8 racines d’un polynôme de degré 8.
Puis X8 +X4 + 1 =

∏
ω∈U12−U4

(X − ω)

= (X2 −
√
3X + 1)(X2 +

√
3X + 1)(X2 −X + 1)(X2 +X + 1)

g) Pour z ∈ C, on a z6 − z3 + 1 = z9+1
z3+1 . D’où z = eiπ/9e2ikπ/9 pour k ∈ {0, 2, 3, 5, 6, 8}.

Donc on a trouvé 6 racines d’un polynôme de degré 6.
On a X6 −X3 + 1
= (X − eiπ/9)(X − e−iπ/9)(X − e5iπ/9)(X − e−5iπ/9)(X − e11iπ/9)(X − e−11iπ/9)
= (X2 − 2 cos(π/9)X + 1)(X2 − 2 cos(5π/9)X + 1)(X2 − 2 cos(11π/9)X + 1)

h) Soit z ∈ C− {−1}.
On a (z + 1)6 + (z − 1)6 = 0

ssi
(

z−1
z+1

)
= −1 = eiπ

ssi ∃ω ∈ U6,
z−1
z+1 = eiπ/6ω

ssi ∃ω ∈ U6, z = eiπ/6ω−1
eiπ/6ω+1

= i tan
(

(2k+1)π
12

)
avec l’arc moitié.

On a donc trouvé 6 racines simples du polynôme.
Le coefficient dominant est 2.

Puis (X + 1)6 + (X − 1)6

= 2(X + i/ tan(π/12))(X − i/ tan(π/12))(X − i/ tan(π/4))
×(X + i/ tan(π/4))(X − i/ tan(5π/12))(X + i/ tan(5π/12))
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13.5 Avec recherche d’idées

= 2(X2 + tan2(π/12))(X2 + 1)(X2 + tan2(π/12)).

Exo 10 : Indication :

Si le polynôme admet une racine réelle alors on peut décomposer P (X) = R(X) + iI(X)
avec R, I ∈ R[X]. Une racine réelle de P est alors une racine commune de R et I. On peut
calculer leur PGCD, ou factoriser celui de plus bas degré.

Solution :

a) On a P (X) = 2X3 − (5 + 6i)X2 + 9iX + (1− 3i)
= (2X3 − 5X2 + 1)− i(6X2 − 9X + 3)
= R(X)− iI(X).

Or I(X) = 6X2 − 9X + 3 = 3(2X − 1)(X − 1).
On vérifie si 1/2 ou/et 1 sont des racines de R(X).
On a R(1) = −2 et R(1/2) = 0. Puis R(X) = (2X − 1)(X2 − 2X − 1).

Donc P (X) = (2X − 1)[X2 − 2X − 1− i(X − 1)] = (2X − 1)[X2 − (2 + i)X + (i− 1)].

On a ∆ = (2 + i)2 − 4(i− 1) = 7. Donc les racines sont 2+i−
√
7

2 et 2+i+
√
7

2 .

b) On a P (X) = 6X4 +X3 + (6i + 10)X2 + (2 + i)X − (4 + 2i) = R(X) + iI(X) avec
R(X) = 6X4 +X3 + 10X2 + 2X − 4 et I(X) = 6X2 +X − 2 = (3X + 2)(2X − 1) de
racines 1/2 et −2/3.

Puis R(−2/3) = R(1/2) = 0 donc R(X) = (3X + 2)(2X − 1)(X2 + 2).

Donc P (X) = (3X + 2)(2X − 1)(X2 + 2 + i).

Pour résoudre z2 = −2− i, on écrit z = a+ ib.

Il vérifie le système


a2 − b2 = −2

2ab = −1

a2 + b2 =
√
5

Donc a2 =
√
5−2
2 et b2 =

√
5+2
2 avec ab < 0.

P (X) = (3X + 2)(2X − 1)

(
X −

√√
5−1
2 + i

√√
5+1
2

)(
X +

√√
5−1
2 − i

√√
5+1
2

)
.

13.5 Avec recherche d’idées

Exo 11 : On note P (X) = X5 −X2 + 1 et P ′(X) = 5X4 − 2X s’annule en 0 et a = 3
√
2/5.

Puis P (0) = 1 > 0 et P (a) = a2(a3 − 1) + 1 = a2(2/5 − 1) + 1 = 3/5a2 + 1 > 0 sont les
extremums locaux de la fonction. Et lim+∞ P = +∞ et lim−∞ P = −∞.

Donc d’après les théorème de la bijection continue il existe une unique racine dans l’inter-
valle ]−∞, 0[. Puis aucune dans les intervalles ]0, a[ et ]a,+∞[.

Par l’absurde, on note α = −p/q la racine supposée rationnelle. On peut supposer p et q
premiers entre eux. Donc P (α) = −p5/q5 + p2/q2 + 1 = 0 donne −p5 + p2q3 + q5 = 0.
Donc q divise q5 + p2q3 = p5. Puis un facteur premier qui divise q divise p. Donc q = 1 car
pgcd(q, p) = 1 et ainsi α = −p est un entier.

Or P (−1) = −1 < 0 donc α ∈]− 1, 0[ d’après les variations de la fonction.
Ainsi un entier α ∈]− 1, 0[ est Absurde.

Exo 12 : A l’aide de la formule du binôme de Newton :∑n
k=0

(
n
k

)
3k(1−X)3n−2kXk

= (1−X)n
(
3X + (1−X)2

)n
= (1−X)n(X2 +X + 1)n

= (−1)n(X − 1)n(X − j)n(X − j2)n.

Donc les racines sont 1, j et j2 et elles sont de multiplicité n.

Exo 13 : Soit a une racine de P ′ alors a est racine de P car (X − a)|P ′(X)|P (X).
De plus multaP = multaP

′ + 1.
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13.6 Problèmes

Or P et P ′ sont scindés sur C.
Donc deg(P ′) =

∑
P ′(a)=0 multaP

′ =
∑

P ′(a)=0(multaP − 1) ≤ deg(P )−N .

avec N le nombre de racines de P ′. Or deg(P ′) = degP − 1 donc N ≤ 1.

Si N = 0 alors P ′ est constant et P (X) = α(X − a).

Si N = 1 alors P ′ = α(X − a)n puis P = α
n+1 (X − a)n+1.

Dans tous les cas P admet une unique racine et P (X) = c(X − a)m avec c ∈ C∗ et m ∈ N.
Exo 14 : On raisonne par double implications.

(⇐) On suppose que b = aq avec q ∈ N∗.

Alors Xb − 1 = (Xa)q − 1q = (Xa − 1)
∑q−1

k=0 X
ak est un multiple de Xa − 1.

(⇒) On suppose que que Xb − 1|Xa − 1.
Alors ω = e2iπ/b, qui est une racine de Xb − 1, est une racine de Xa − 1.
Ainsi ωa − 1 = 0 c’est à dire e2iaπ/b = 1 donc 2iπa/b ∈ 2iπZ.
Puis a/b ∈ Z i.e. b|a.

13.6 Problèmes

Exo 15 : Indication :

a) et b) On peut raisonner par récurrence double.

c) On résout l’équation trigonométrique cos(nθ) = 0 pour en déduire les racines α = cos θ.

d) On utilise les relations coefficients/racines
∏

P (α)=0 α
mα = (−1)n a0

an
.

Solution :

a) On montre par récurrence double sur n ∈ N∗ que Pn est de degré n et que son coefficient
dominant est 2n−1.

Initialisation n = 1 on a P1 = X est de degré 1 et de coefficient dominant 1 = 20.
n = 2 on a P2 = 2X2 − 1 est de degré 2 et de coefficient dominant 2 = 21.

Hérédité Soit n ∈ N∗ tel que Pn = 2n−1Xn + Rn et Pn+1 = 2nXn+1 + Rn+1 avec
deg(Rn) < n et deg(Rn+1) < n+ 1.
Donc Pn+2 = 2XPn+1 −Pn = 2n+1Xn+2 +2XRn+1 −Pn avec Rn+2 = 2XRn+1 −Pn

de degré strictement plus petit que n+ 2.

Donc Pn+2 est de degré n+ 2 et de coefficient dominant 2n+1

b) On montre que Pn(cosx) = cos(nx) par récurrence double sur n ∈ N.
Initialisation n = 0 On a P0(cosx) = 1 et cos(0x) = 1.
n = 1 On a P1(cosx) = cosx = cos(1.x).

Hérédité Soit n ∈ N tel que Pn(cosx) = cos(nx) et Pn+1(cosx) = cos((n+ 1)x).
Donc Pn+2(cosx) = 2 cosxPn+1(cosx)−Pn(cosx) = 2 cosx cos((n+1)x)− cosnx par
HR.

Or 2 cos((n+1)x) cos(x) = cos[(n+1)x+x]+cos[(n+1)x−x] = cos((n+2)x)+cos(nx).

Donc Pn+2(cosx) = cos((n+ 2)x) + cos(nx)− cos(nx) = cos((n+ 2)x).

c) On a cos(nx) = 0 ssi nx ≡ π/2[π] ssi x = (2k+1)π
2n pour k ∈ llbracket0, n− 1K.

Donc Pn(cosx) = 0 pour ces valeurs et αk = cos (2k+1)π
2n sont des racines de Pn.

Ces nombres sont 2 à 2 distincts et il y en a n le degré de Pn.

Donc ce sont toutes les racines de Pn et elles sont simples.

En particulier Pn(X) = 2n−1
∏n

k=0(X − αn).

d) Le produit des racines est donné par le coefficient constant cn = Pn(0).

On a c0 = 1, c1 = 0 et cn+2 = 2.0.cn+1 − cn = −cn par la récurrence de l’énoncé.

Donc c2k = (−1)k et c2k+1 = 0.

Puis pn =
∏n−1

k=0 cos
(

(2k+1)π
2n

)
= (−1)n cn

2n−1 .

Donc p2k = (−1)k

22k−1 et p2k+1 = 0.
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13.6 Problèmes

Exo 16 : Indication :

d) On peut raisonner par récurrence simple. Le théorème de Rolle permet de démontrer
que si P s’annule n fois entre ]−1, 1[ alors P ′ s’annule n−1 fois entre ]−1, 1[. Ceci montre
que la dérivée à une racine de moins alors que notre récurrence veut une racine de plus.

On sait que Q
(k)
n s’annule k fois par hypothèse de récurrence et 2 fois de plus (en x = 1 et

x = −1) d’après le c). C’est à dire Q
(k)
n s’annule k + 2 fois, on peut donc démontrer que

Q
(k+1)
n s’annulent k + 1 fois.

f) On applique la formule de Leibniz à l’ordre n+1 (fg)(n+1) =
∑n+1

k=0

(
n+1
k

)
f (k)g(n+1−k)

Solution :

a) On obtient P1(X) = 2X, P2(X) = 12X2 − 4 et P3(X) = 120X3 − 72X.

b) On a degQn = deg(X2 − 1)n = ndeg(X2 − 1) = 2n. Puis Pn est la dérivée n-ième,
donc degPn = degQn − n = n.

c) On a Qn(X) = (X2 − 1)n = (X − 1)n(X + 1)n donc par divisibilité les racines sont 1
et −1 et de multiplicité n.

d) On démontre le résultat par récurrence pour k = 0. On a Q
(0)
n = Qn n’a aucune

racine dans ] − 1, 1[. Puis si pour 0 ≤ k < n,Q
(k)
n admet exactement k racines :

−1 < x1 < ... < xk < 1. Or on sait de plus que 1 et −1 sont racines de Q
(k)
n de

multiplicité n − k. Donc le théorème de Rolle, la dérivée de Q
(k)
n admet des racines

entre chacune de ces racines : il existe donc −1 < y1 < x1 < y2 < ... < xk < yk+1 < 1

tel que Q
(k+1)
n (yj) = 0. Ceci constitue k + 1 racines de Q

(k+1)
n . Puis deg(Q

(k+1)
n ) =

2n− (k+1) ≥
∑

α racine multα(Q
(k+1)
n ) ≥ mult1(Q

(k+1)
n ) +mult−1(Q

(k+1)
n ) + k+1 =

(n− k− 1)+ (n− k− 1)+ k+1 = 2n− (k+1). Donc on a égalité et il n’y a donc pas
d’autres racines que −1 < y1 < ... < yk+1 < 1. C’est à dire exactement (k+1) racines
distinctes dans ]− 1, 1[.

e) On dispose ainsi de n racines réelles distinctes −1 < a1 < ... < an < 1 d’un polynôme
de degré n d’où P (X) = λ(X − a1)...(X − an) est scindé à racines simples.

f ) On a :Pn+1(X) =
(
(X2 − 1)Qn

)(n+1)

=
∑n+1

k=0

(
n+1
k

)
(X2 − 1)(k)Q

(n−k)
n

= (X2 − 1)Q
(n+1)
n + (n+ 1)(2X)Q

(n)
n + (n+1)n

2 2Q
(n−1)
n

= (X2 − 1)P ′
n(X) + 2X(n+ 1)Pn(X) + n(n+ 1)Q

(n−1)
n .

g) On montre par récurrence que Pn(1) = 2nn!. On a P1(1) = 2, P2(1) = 8 et P3(1) = 48.
La formule de la question précédente se simplifie car 1 et −1 sont racines de X2 − 1

et Q
(n−1)
n . Donc Pn+1(1) = 2(n+ 1)Pn(1) = 2(n+ 1)2nn! = 2n+1n!.

De même, on obtient Pn(−1) = (−1)n2n+1n! (ou par parité des fonctions Pn).
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