Programme de colles, semaines 19 et 20

Chapitre 14 : Espaces vectoriels \mathbb{R}^n applications linéaires et matrices canoniquement associées Questions de cours :

L'espace vectoriel \mathbb{R}^n :

- définitions propres!! d'une base, d'une famille libre, d'une famille génératrice de \mathbb{R}^n , du terme combinaison linéaire.
 - Démonstration de ce que les vecteurs de la base canonique de \mathbb{R}^n forment bien une base de \mathbb{R}^n .
 - base⇔libre et génératrice :démonstration.
- Démonstration de ce qu'un plan vectoriel (ensemble des combinaisons linéaires de deux vecteurs non colinéaires) est un sev de \mathbb{R}^n .
 - Définition de Vect(X), et montrer que c'est un sev de E.
- Exercice : Dans \mathbb{R}^4 , soit $V = \{(x, y, z, t) \in \mathbb{R}^4 : x + 2t = 0\}$. Montrer que V est un sous-espace vectoriel de \mathbb{R}^4 . Déterminer une base de V.

Applications linéaires de \mathbb{R}^p dans \mathbb{R}^n :

- f linéaire, montrer que ker (f) et Im(f) sont des sev de \mathbb{R}^p et \mathbb{R}^n .
- Condition nécessaire et suffisante d'injectivité et de surjectivité d'une application linéaire (énoncé en termes de noyau ou d'image, sans démonstration)
 - Enoncé du lien entre application linéaire et matrice canoniquement associée:

Toute application linéaire $f: \mathbb{R}^p \longrightarrow \mathbb{R}^n$ est canoniquement associée à une matrice de taille (n,p) dont les colonnes sont dans l'ordre les coordonnées dans la base canonique de \mathbb{R}^n des images par f des vecteurs de la base canonique de \mathbb{R}^p ,

c'est-à-dire que si $(\overrightarrow{e_1}, \ldots, \overrightarrow{e_p})$ sont les vecteurs de la base canonique de \mathbb{R}^p , alors ceci se résume dans l'écriture:

$$A = \begin{pmatrix} f(\overrightarrow{e_1}) & \cdots & f(\overrightarrow{e_p}) \\ a_{1,1} & \cdots & a_{1,p} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,p} \end{pmatrix}$$

- Soit $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ définie par f((x, y, z)) = (x, z, y + z, x + y).
- 1.a.) Justifier que f est linéaire.
- 1.b.) Décrivez deux méthodes permettant de donner la matrice canoniquement associée à f.
- Exercice: Soit $A = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ et f l'application linéaire canoniquement associée à A.

Montrer que $f \circ f = f$, déterminer $\ker(A)$ et $\ker(A - I_3)$. Montrer que $\ker(A)$ et $\ker(A - I_3)$ sont supplémentaires dans \mathbb{R}^3 .

- Si $f: \mathbb{R}^p \longrightarrow \mathbb{R}^n$ est un linéaire et bijective, montrer que f^{-1} est linéaire.

Chapitre 15 : espaces vectoriels, dimension -Vect(X), est le plus petit sev de E contenant X : preuve.

- Exercice: On pose $f_n: x \to e^{nx}$. Montrer que $(f_0, f_1, \dots f_n)$ est libre dans $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$.
- Toute famille de polynômes non nuls de $\mathbb{K}[X]$ de degrés échelonnés est libre : preuve. Définir "base de $\mathbb{K}_n[X]$ de polynômes de degrés échelonnés"

- Base et dimension de l'espace vectoriel $\mathcal{M}_{n,p}(\mathbb{K})$, avec démonstration.
- Base et dimension de l'ensemble des matrices triangulaires supérieures, avec démonstration.
- Exercice : Soient $a, b \in \mathbb{C}^*$, $a \neq b$. Montrer que l'ensemble des polynômes de degré au plus 4 et admettant a et b comme racines est un sous-espace vectoriel de $\mathbb{C}_4[X]$. En trouver une base.

Sommes de sev, sommes directes, supplémentaires

- Si V et W sont des sev de E, définition de V+W et preuve que c'est un sev de E.
- Sous-espaces vectoriels en somme directe.
- Définition et caractérisation des supplémentaires (avec démonstration). Enoncé (sans dém.) des deux théorèmes liant supplémentaires et bases obtenues comme réunions de bases des deux supplémentaires.
 - E de dimension finie, F sev de E et $\dim(F) = \dim(E)$, montrer que F = E.
- dim (F+G) et théorème de caractérisation des supplémentaires par l'intersection et la dimension: énoncé et dém. du théorème (pas dém de la formule donnant dim (F+G)).
- Exercice : soient $F = \left\{ f \in \mathcal{C}\left(\left[-1,1\right],\mathbb{C}\right) / \int_{-1}^{1} f = 0 \right\}$ et $G = \left\{ f \in \mathcal{C}\left(\left[-1,1\right],\mathbb{C}\right) / f$ constante $\right\}$. Montrer que F et G sont deux sev supplémentaires de $\mathcal{C}\left(\left[-1,1\right],\mathbb{C}\right)$.

ATTENTION: l'ev des matrices et les sev (matrices diag, triang., symétriques et antisymétriques) n'ont pas encore été étudiés. Pas d'exercice sur cette partie.