D.M.7 3 Mars 2025

Exercice 1 : On note $\mathcal{M}_n(\mathbb{R})$ l'ensemble des matrices carrées de taille n à coefficients dans \mathbb{R} , on note I_n l'élément neutre de $\mathcal{M}_n(\mathbb{R})$ pour la multiplication.

Pour θ réel quelconque, on définit la matrice $R_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ Soit F le sous ensemble de $\mathcal{M}_2(\mathbb{R})$ des matrices de la forme $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ avec $(a,b) \in \mathbb{R}^2$ Soit G le sous ensemble de $\mathcal{M}_2(\mathbb{R})$ des matrices de la forme $\begin{pmatrix} c & d \\ d & -c \end{pmatrix}$ avec $(c,d) \in \mathbb{R}^2$

- **0** Rappeler la dimension de $\mathcal{M}_2(\mathbb{R})$.
- 1 Montrer que F est un sous espace vectoriel de $\mathcal{M}_2(\mathbb{R})$. Préciser une base de F et la dimension de F.

 Justifier rapidement que G est un sous espace vectoriel de $\mathcal{M}_2(\mathbb{R})$ et préciser sa dimension.
- **2** Montrer que F et G sont deux sous espaces vectoriels supplémentaires dans $\mathcal{M}_2(\mathbb{R})$. Soit θ un réel, $\theta \neq k\pi$, k entier relatif quelconque et C l'ensemble des matrices M appartenant à $\mathcal{M}_2(\mathbb{R})$ et vérifiant $MR_{\theta} = R_{\theta}M$.
- **3a** Montrer que F est inclus dans C.
- **3b** Déterminer $G \cap C$.
- 4 Montrer que F = C.

Exercice 2: Pour tout entier $n \in \mathbb{N}$,

- on note $\mathbb{R}_n[X]$ le \mathbb{R} -espace vectoriel des polynômes de $\mathbb{R}[X]$ de degré inférieur ou égal à n.
- on pose $P_n(X) = (X^2 1)^n$
- on appelle n-ième polynôme de Legendre, noté L_n , la dérivée n-ième du polynôme $P_n:L_n\left(X\right)=P_n^{(n)}\left(X\right)$. Ainsi, $L_0=P_0,\,L_1=P_1',\,L_2=P_2'',\ldots$

1 : Exemple n = 2 :

- **1a** Ecrire sous forme développée les polynômes L_0 , L_1 et L_2 .
- **1b** Montrer que la famille $\mathcal{B}_2 = (L_0, L_1, L_2)$ est une base de $\mathbb{R}_2[X]$.
- 2 : Base des polynômes de Legendre Fixons $n \in \mathbb{N}^*$.
- **2a** Déterminer le degré de L_k pour tout $k \in \mathbb{N}$, ainsi que son coefficient dominant.
- **2b** Justifier que $\mathcal{B}_n = (L_0, \dots, L_n)$ est une base de $\mathbb{R}_n[X]$.
- **2c** Préciser l'ordre de multiplicité des racines de P_n . Soit $k \in [|0, n-1|]$. Que valent les nombres $P_n^{(k)}(1)$ et $P_n^{(k)}(-1)$?

2d Soit $Q \in \mathbb{R}[X]$. Montrer:

$$\forall k \in [|0, n|], \quad \int_{-1}^{1} L_n(t) Q(t) dt = (-1)^k \int_{-1}^{1} P_n^{(n-k)}(t) Q^{(k)}(t) dt.$$

- **2e** En déduire : $\forall Q \in \mathbb{R}_{n-1}[X]$, $\int_{-1}^{1} L_n(t) Q(t) dt = 0$.
- **2f** En déduire que pour tous entiers naturels $j \neq k$: $\int_{-1}^{1} L_{j}(t) L_{k}(t) dt = 0$.
- **3a** Justifier que pour tout entier k, $\int_{-1}^{1} (L_k(t))^2 dt > 0$. Cette question doit être admise tant qu'on n'a pas fait le chapitre 17.
- **3b** Soit $P \in \mathbb{R}_n[X]$. Déterminer les coordonnées (a_0, a_1, \dots, a_n) de P dans \mathcal{B}_n en fonction des intégrales $\int_{-1}^1 P(t) L_k(t) dt$ et $\int_{-1}^1 (L_k(t))^2 dt$ avec $k \in [|0, n|]$.

Problème : Soit f définie sur \mathbb{R} par $\forall x \in \mathbb{R}$, $f(x) = 3xe^{-x^2} - 1$. On donne $e \simeq 2.7$; $\frac{1}{\sqrt{e}} \simeq 0.6$; $\sqrt{2} \simeq 1.4$; $3\frac{\sqrt{2}}{2}e^{-1/2} \simeq 1.2$ et $\ln(3) \simeq 1.1$

Partie 1: étude d'une fonction.

- 1 Etudier les variations de f sur \mathbb{R} , ainsi que les limites aux bornes du domaine de définition.
- 2 Donner le tableau de variations de f, précisez les asymptotes.
- **3** Donner l'équation de la tangente en 0. Etudier la position de la courbe C_f par rapport à la tangente au point d'abcisse 0.
- **4** Donner l'allure de la courbe C_f .
- Partie 2 : étude de deux suites. On suppose désormais dans toute la suite du problème que l'entier naturel n est supérieur ou égal à 2. Soit $f_n(x) = 3x^n e^{-x^2} 1$.
- **5** Quel est le signe de $f_n(0)$? de $f_n(1)$?
- 6 Etudier les variations de f_n sur l'intervalle $[0, +\infty[$. Justifiez ensuite que les éventuelles monotonies de f_n obtenues sont strictes. Donner la limite de $f_n(x)$ quand x tend vers $+\infty$. En déduire que f_n s'annule sur $[0, +\infty[$ en deux réels, et exactement deux, notés u_n et v_n et vérifiant $u_n < 1 < v_n$.
- 7 Quelle est la limite de la suite (v_n) ?
- **8a** Calculer $e^{-u_n^2}$ en fonction de u_n^n .
- **8b** En déduire le signe de $f_{n+1}(u_n)$.
- **8c** Déduire de ce qui précède la monotonie de $(u_n)_{n\geq 2}$.
- 8d Montrer que la suite (u_n) est convergente. On note l sa limite.
- **9** Soit g_n définie sur $]0, +\infty[$ par : $\forall x > 0, g_n(x) = \ln(3) + n\ln(x) x^2.$

- **9a** Soit t > 0. Montrer que $g_n(t) = 0$ si et seulement si $f_n(t) = 0$.
- **9b** On suppose que $l \neq 1$. Trouver une contradiction en utilisant ce qui précède. Qu'en conclut-on ?
- **9c** Soit la suite $(w_n)_{n\geq 2}$ définie par $\forall n\geq 2, w_n=u_n-1$. Trouver, en utilisant un développement limité de $g_n(1+w_n)$, un équivalent simple de w_n .
- Partie 3 : étude d'une équation différentielle. Soit $n \in \mathbb{N}^*$. Soit E_n l'équation différentielle $xy' (n 2x^2) y = n 2x^2$. Soit H_n l'équation homogène associée à E_n .
- **10** Résoudre H_n sur $]0, +\infty[$ et sur $]-\infty, 0[$.
- 11 En déduire les solutions de E_n sur $]0, +\infty[$ et sur $]-\infty, 0[$.

Corrigé de l'exercice 1 : Pour
$$\theta$$
 réel quelconque, on définit la matrice $R_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$
Soit F le sous ensemble de $M_2(\mathbb{R})$ des matrices de la forme $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ avec $(a,b) \in \mathbb{R}^2$
Soit G le sous ensemble de $M_2(\mathbb{R})$ des matrices de la forme $\begin{pmatrix} c & d \\ d & -c \end{pmatrix}$ avec $(c,d) \in \mathbb{R}^2$

- **0** Rappeler la dimension de $M_2(\mathbb{R})$. $\dim \left(\mathcal{M}_2 \left(\mathbb{R} \right) \right) = 4.$
- 1 Montrer que F est un sous espace vectoriel de $\mathcal{M}_2(\mathbb{R})$. Préciser une base de F et la dimension de F. Justifier rapidement que G est un sous espace vectoriel de $\mathcal{M}_2(\mathbb{R})$ et préciser sa dimension.
 - $F \subset \mathcal{M}$.
 - Pour a = b = 0, $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ est la matrice nulle qui appartient à F
 - De plus $\lambda \begin{pmatrix} a & -b \\ b & a \end{pmatrix} + \lambda' \begin{pmatrix} a' & -b' \\ b' & a' \end{pmatrix} = \begin{pmatrix} \lambda a + \lambda' a' & -(\lambda b + \lambda' b') \\ \lambda b + \lambda' b' & \lambda a + \lambda' a' \end{pmatrix} \in F \text{ donc } F \text{ est}$ $\begin{pmatrix} a & -b \\ b & a \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{ donc } F = Vect(I_2, S) \text{ avec } S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$ La famille de matrices (I_2, S) est libre donc est une basede F donc dim (F) = 2On montre de même que G est un sous espace vectoriel $\mathcal{M}_2(\mathbb{R})$ de base (S', S'') avec $S' = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ et $S'' = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ donc G est de dimension 2.

On pouvait bien sûr procéder pour l'ensemble de cette question par "atomisation" à condition de bien le rédiger.

2 Montrer que F et G sont deux sous espaces vectoriels supplémentaires dans $M_2(\mathbb{R})$.

$$\bullet \left(\begin{array}{cc} a & -b \\ b & a \end{array} \right) = \left(\begin{array}{cc} c & d \\ d & -c \end{array} \right) \text{ entraı̂ne } a = c = -c \text{ et } b = d = -b \text{ donc } \overline{F \cap G = \left\{0_{\mathcal{M}_2(\mathbb{R})}\right\}}$$

- De plus $\dim(F) + \dim(F) = 2 + 2 = 4 = \dim(\mathcal{M}_2(\mathbb{R}))$
- donc F et G sont des sous espaces vectoriels supplémentaires dans $\mathcal{M}_2(\mathbb{R})$.

Soit θ un réel, $\theta \neq k\pi, k$ entier relatif quelconque et C l'ensemble des matrices M appartenant à $\mathcal{M}_2(\mathbb{R})$ et vérifiant $MR_{\theta} = R_{\theta}M$.

3a Montrer que F est inclus da

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} = \begin{pmatrix} a\cos(\theta) - b\sin(\theta) & -a\sin(\theta) - b\cos(\theta) \\ a\sin(\theta) + b\cos(\theta) & a\cos(\theta) - b\sin(\theta) \end{pmatrix}$$

$$= \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \text{donc } F \text{ est contenu dans } C.$$

3b Déterminer
$$G \cap C$$
.
$$\begin{pmatrix} c & d \\ d & -c \end{pmatrix} \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} = \begin{pmatrix} c\cos(\theta) + d\sin(\theta) & -c\sin(\theta) + d\cos(\theta) \\ -c\sin(\theta) + d\cos(\theta) & -c\cos(\theta) - d\sin(\theta) \end{pmatrix}$$

$$\operatorname{et} \left(\begin{array}{cc} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{array} \right) \left(\begin{array}{c} c & d \\ d & -c \end{array} \right) = \left(\begin{array}{cc} c\cos(\theta) - d\sin(\theta) & c\sin(\theta) + d\cos(\theta) \\ c\sin(\theta) + d\cos(\theta) & -c\cos(\theta) + d\sin(\theta) \end{array} \right) \operatorname{donc} \left(\begin{array}{c} c & d \\ d & -c \end{array} \right) \in C \text{ si et seulement si } \left\{ \begin{array}{cc} d\sin(\theta) = -d\sin(\theta) \\ -c\sin(\theta) = c\sin(\theta) \end{array} \right. \text{ Or } \theta \neq k \times \pi \text{ donc } \sin(\theta) \neq 0 \text{ donc } d = c = 0$$

$$\operatorname{donc} G \cap C = \left\{ 0_{\mathcal{M}_2(\mathbb{R})} \right\}.$$

4 Montrer que F = C (on pourra supposer qu'une matrice M appartient à C et utiliser les questions 2 et 3).

Soit M une matrice quelconque. On peut écrire $M = M_1 + M_2$ avec $M_1 \in F$ et $M_2 \in G$.

 $M \in C \iff MR_{\theta} = R_{\theta}M \iff (M_1 + M_2)R_{\theta} = R_{\theta}(M_1 + M_2) \iff M_1R_{\theta} + M_2R_{\theta} = R_{\theta}M_1 + R_{\theta}M_2.$

Or $M_1 \in F$ donc $M_1 \in C$ donc $M \in C \iff M_2R_\theta = R_\theta M_2$ ce qui, d'après la question 3, entraine que $M_2 = 0_{\mathcal{M}_2(\mathbb{R})}$ car $M_2 \in G$.

On en déduit que $M \in C \iff M = M_1 \text{ donc } F = C$.

Corrigé de l'exercice 2 : Pour tout entier $n \in \mathbb{N}$,

- on note $\mathbb{R}_n[X]$ le \mathbb{R} -espace vectoriel des polynômes de $\mathbb{R}[X]$ de degré inférieur ou égal à n.
- on pose $P_n(X) = (X^2 1)^n$
- on appelle n-ième polynôme de Legendre, noté L_n , la dérivée n-ième du polynôme $P_n: L_n(X) = P_n^{(n)}(X)$.

Ainsi, $L_0 = P_0, L_1 = P_1', L_2 = P_2'', \dots$

et de déterminer les coordonnées d'un polynôme quelconque P de $\mathbb{R}_n[X]$ dans la base \mathcal{B}_n .

Sans aborder la partie 2, on pourra quand même traiter la partie 3 en utilisant uniquement le résultat de la question 2e.

1 : exemple n = 2 :

1a Ecrire sous forme développée les polynômes L_0 , L_1 et L_2 .

On a:

$$L_0 = P_0 = (X^2 - 1)^0 = 1$$

$$P_1 = X^2 - 1 \text{ donc } L_1 = P'_1 = 2X$$

$$P_2 = (X^2 - 1)^2 \text{ donc } P'_2 = 4X(X^2 - 1) = 4X^3 - 4X$$

$$\text{donc } L_2 = P''_2 = 12X^2 - 4$$

1b Montrer que la famille $\mathcal{B}_2 = (L_0, L_1, L_2)$ est une base de $\mathbb{R}_2[X]$.

 L_0, L_1, L_2 sont de degré 0, 1, 2 donc forment une famille de polynômes de degrés échelonnés de 0 à 2 donc une base de $\mathbb{R}_2[X]$.

2 : Base des polynômes de Legendre Fixons $n \in \mathbb{N}^*$.

2a Déterminer le degré de L_k pour tout $k \in \mathbb{N}$, ainsi que son coefficient dominant.

On a deg $(P_k) = 2k$ donc deg $(L_k) = 2k - k = k$.

De plus, le coefficient (dominant) de X^{2k} dans P_k est 1 donc celui (dominant) de X^k dans $L_k = P_k^{(k)}(X)$ vaut :

$$c(L_k) = 2k(2k-1)\cdots(k+1) = \frac{(2k)!}{k!}$$

- **2b** Justifier que $\mathcal{B}_n = (L_0, \dots, L_n)$ est une base de $\mathbb{R}_n[X]$. $(L_0, \dots L_n)$ est donc une famille de polynomes de degré échelonnés de 0 à n donc c'est une base de $\mathbb{R}_n[X]$.
- **2c** Préciser l'ordre de multiplicité des racines de P_n . Soit $k \in [|0, n-1|]$. Que valent les nombres $P_n^{(k)}(1)$ et $P_n^{(k)}(-1)$?

On a $P_n(X) = (X^2 - 1)^n = (X - 1)^n (X + 1)^n$ donc les racines de P_n sont 1 et -1 avec multiplicité n pour chacune.

D'après la caractérisation de la multiplicité des racines, on a donc pour tout $k \in [|0, n-1|]$, $P_n^{(k)}(1) = P_n^{(k)}(-1) = 0$.

2d Soit $Q \in \mathbb{R}[X]$. Montrer :

$$\forall k \in [|0, n|], \int_{-1}^{1} L_n(t) Q(t) dt = (-1)^k \int_{-1}^{1} P_n^{(n-k)}(t) Q^{(k)}(t) dt.$$

Soit $Q \in \mathbb{R}[X]$.

Montrons la formule de l'énoncé par récurrence bornée sur $k \in [[0, n]]$:

- Initialisation : k = 0. On a $\mathbb{Z}_n = P_n^{(n)} = P_n^{(n-k)}$ et $Q = Q^{(0)} = Q^{(k)}$ donc évidemment, $\int_{-1}^1 L_n(t) Q(t) dt = (-1)^k \int_{-1}^1 P_n^{(n-k)}(t) Q^{(k)}(t) dt$.
- Hérédité : Soit $k \in [[0, n-1]]$, supposons $\int_{-1}^{1} L_n(t) Q(t) dt = (-1)^k \int_{-1}^{1} P_n^{(n-k)}(t) Q^{(k)}(t) dt$. On intègre par parties en posant $\begin{cases} u(t) = Q^{(k)}(t) \\ v(t) = P_n^{(n-(k+1))}(t) \end{cases}$ d'où $\begin{cases} u'(t) = Q^{(k+1)}(t) \\ v'(t) = P_n^{(n-k)}(t) \end{cases}$ d'où :

$$\int_{-1}^{1} L_{n}(t) Q(t) dt = (-1)^{k} \left(\left[Q^{(k)}(t) P_{n}^{(n-k)}(t) \right]_{-1}^{1} - \int_{-1}^{1} P_{n}^{(n-(k+1))}(t) Q^{(k+1)}(t) dt. \right)$$

$$= (-1)^{k} \left(0 - 0 - \int_{-1}^{1} P_{n}^{(n-(k+1))}(t) Q^{(k+1)}(t) dt \right) \text{ d'après } 2b$$

$$= (-1)^{k+1} \int_{-1}^{1} P_{n}^{(n-(k+1))}(t) Q^{(k+1)}(t) dt$$

ce qui achève la récurrence et donne la formule pour tout $k \in [|0, n|]$.

- **2e** En déduire : $\forall Q \in \mathbb{R}_{n-1}[X]$, $\int_{-1}^{1} L_n(t) Q(t) dt = 0$. Pour $Q \in \mathbb{R}_{n-1}[X]$, on a $Q^{(n)} = 0$ donc en prenant k = n ci-dessus, on a : $\int_{-1}^{1} L_n(t) Q(t) dt = (-1)^n \int_{-1}^{1} P_n^{(n-n)}(t) Q^{(n)}(t) dt = (-1)^n \int_{-1}^{1} 0 dt = 0$.
- **2f** En déduire que pour tous entiers naturels $j \neq k$: $\int_{-1}^{1} L_{j}(t) L_{k}(t) dt = 0$.

Or si $j \neq k$, on a j > k ou j < k.

Par exemple, si j > k, on a $L_k \in \mathbb{R}_{j-1}[X]$ car $\deg(L_k) = k < j$ donc d'après 2d en prenant $Q = L_k$, on a $\int_{-1}^1 L_j(t) L_k(t) dt = 0$.

Idem en échangeant j et k si j < k.

- **3a** Justifier que pour tout entier k, $\int_{-1}^{1} (L_k(t))^2 dt > 0$.
 - $\forall t \in [-1, 1], (L_k(t))^2 \ge 0$

- $t \mapsto (L_k(t))^2$ est continue sur [-1,1]
- $t \mapsto (L_k(t))^2$ n'est pas identiquement nulle sur [-1,1] (car sinon, L_k admettrait une infinité de racines donc serait le polynome nul, ce qui n'est pas). Donc $\int_{-1}^{1} (L_k(t))^2 dt > 0$.
- **3b** Soit $P \in \mathbb{R}_n[X]$. Déterminer les coordonnées (a_0, a_1, \dots, a_n) de P dans \mathcal{B}_n en fonction des intégrales $\int_{-1}^{1} P(t) L_k(t) dt \text{ et } \int_{-1}^{1} (L_k(t))^2 dt \text{ avec } k \in [|0, n|].$ P se décompose ainsi : $P = a_0 L_0 + a_1 L_1 + \dots + a_n L_n \text{ avec } (a_0, a_1, \dots, a_n) \in \mathbb{R}^{n+1}$. On a alors

 $pourk \in [0, n]$:

$$\int_{-1}^{1} P(t) L_k(t) dt = \int_{-1}^{1} (a_0 L_0 + a_1 L_1 + \dots + a_n L_n) (t) L_k(t) dt$$

$$= \int_{-1}^{1} \sum_{i=0}^{n} a_i L_i(t) L_k(t) dt = \sum_{i=0}^{k} a_i \int_{-1}^{1} L_i(t) L_k(t) dt$$

$$= a_k \int_{-1}^{1} (L_k(t))^2 dt \text{ car tous les autres sont nuls vu } 2f.$$

donc puisque
$$\int_{-1}^{1} (L_k(t))^2 dt \neq 0$$
, il vient $a_k = \frac{\int_{-1}^{1} P(t) L_k(t) dt}{\int_{-1}^{1} (L_k(t))^2 dt}$.

Problème : Soit f définie sur \mathbb{R} par $\forall x \in \mathbb{R}$, $f(x) = 3xe^{-x^2} - 1$.

On donne
$$e \simeq 2.7$$
; $\frac{1}{\sqrt{e}} \simeq 0.6$; $\sqrt{2} \simeq 1.4$; $3\frac{\sqrt{2}}{2}e^{-1/2} \simeq 1.2$ et $\ln(3) \simeq 1.1$.

Partie 1: étude d'une fonction.

1 Etudier les variations de f sur \mathbb{R} , ainsi que les limites aux bornes du domaine de définition. f est dérivable sur \mathbb{R} comme somme produit et composée de fonctions dérivables et :

$$\forall x \in \mathbb{R}, \ f'(x) = 3e^{-x^2} - 6x^2e^{-x^2} = 3\left(1 - 2x^2\right)e^{-x^2}$$
 donc $f'(x) \ge 0 \Leftrightarrow 2x^2 \le 1 \Leftrightarrow x^2 \le \frac{1}{2} \Leftrightarrow x \in \left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]$ donc f est décroissante sur $\left]-\infty, -\frac{\sqrt{2}}{2}\right]$ et sur $\left[\frac{\sqrt{2}}{2}, +\infty\right[$ et croissante sur $\left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]$. De plus, $\left|xe^{-x^2}\right| = (x^2)^{1/2}e^{-x^2}$.

Par croissance comparée, $\lim_{X\to +\infty} X^{1/2}e^{-X}=0$, or $\lim_{x\to +\infty} x^2=+\infty$ donc par composition de limites, $\lim_{x \to \pm \infty} \left| x e^{-x^2} \right| = 0$ donc $\lim_{x \to \pm \infty} x e^{-x^2} = 0$ donc $\lim_{x \to \pm \infty} f(x) = -1$.

2 Donner le tableau de variations de f, précisez les asymptotes.

$$f\left(-\frac{\sqrt{2}}{2}\right) = -3\frac{\sqrt{2}}{2}e^{-1/2} - 1 \simeq -2.2 \text{ et } f\left(\frac{\sqrt{2}}{2}\right) = 3\frac{\sqrt{2}}{2}e^{-1/2} - 1 \simeq 0.2$$

x	$-\infty$	$-\frac{\sqrt{2}}{2}$		$\frac{\sqrt{2}}{2}$	$+\infty$
f'(x)	_	0	+	0	+
f(x)	-1	≃ 7 2.2	7	$\simeq 0.2$	> _1

La droite horizontale $\Delta: y = -1$ est donc asymptote à \mathcal{C}_f au voisinage de $+\infty$ et $-\infty$.

3 Donner l'équation de la tangente en 0. Etudier la position de la courbe C_f par rapport à la tangente au point d'abcisse 0.

f(0) = -1 et f'(0) = 3 donc la courbe C_f admet au point d'abcisse 0 une tangente T_0 d'équation $T_0: y = 3x - 1$.

De plus:

$$f(x) - (3x - 1) = 3xe^{-x^2} - 1 - (3x - 1)$$
$$= 3x (e^{-x^2} - 1)$$

Or $-x^2 \le 0$ donc $e^{-x^2} - 1 < 0$ donc f(x) - (3x - 1) est du signe de -x donc C_f est au-dessus de T_0 pour x < 0 et au-dessous pour x > 0. Donc le point d'abcisse 0 de C_f est un point d'inflexion.

Remarquons qu'ici il n'était pas nécessaire de faire un développement limité. Cependant, un tel développement limité est possible et donne $f(x) = -1 + 3x - 3x^3 + o_0(x^3)$ et donne la même conclusion mais seulement au voisinage de 0.

4 Donner l'allure de la courbe C_f .

Partie 2 : étude de deux suites. On suppose désormais dans toute la suite du problème que l'entier naturel n est supérieur ou égal à 2. Soit $f_n(x) = 3x^n e^{-x^2} - 1$.

5 Quel est le signe de $f_n(0)$? de $f_n(1)$?

$$f_n(0) = -1 < 0 \text{ et } f_n(1) = \frac{3}{e} - 1 > 0 \text{ car } 3 > e > 0$$

6 Etudier les variations de f_n sur l'intervalle $[0, +\infty[$. Justifiez ensuite que les éventuelles monotonies de f_n obtenues sont strictes.

ATTENTION : dans cette question, les détails sont délicats à rédiger (monotonie stricte, inégalités strictes, unicité, hypothèses des théorèmes appliqués, choix des théorèmes les plus simples à utiliser,...)

 f_n est dérivable sur \mathbb{R}^+ et $\forall x \in \mathbb{R}^+$, $f'_n(x) = 3e^{-x^2}(nx^{n-1} - 2x^{n+1}) = 3x^{n-1}e^{-x^2}(n-2x^2)$ donc:

$$f'_n(x) \ge 0 \Leftrightarrow x^2 \le \frac{n}{2} \Leftrightarrow x \le \sqrt{n/2}$$

donc f_n est croissante sur $\left[0,\sqrt{n/2}\right]$ et décroissante sur $\left[\sqrt{n/2},+\infty\right[$.

Comme f'_n ne s'annule qu'en 0 et en $\sqrt{n/2}$, ces monotonies sont en fait strictes.

Donner la limite de $f_n(x)$ quand x tend vers $+\infty$. En déduire que f_n s'annule sur $[0, +\infty[$ en deux réels, et exactement deux, notés u_n et v_n et vérifiant $u_n < 1 < v_n$.

On a pour $x \ge 0$: $3x^n e^{-x^2} = 3\frac{(x^2)^{n/2}}{e^{x^2}} \to 0$ quand $x \to +\infty$ par croissance comparée et composition de limites. Donc :

$$\lim_{x \to +\infty} f_n\left(x\right) = -1.$$

Donc d'après le théorème de la bijection, f_n étant strictement croissante et continue sur $\left[0,\sqrt{n/2}\right]$ et strictement décroissante et continue sur $\left[\sqrt{n/2},+\infty\right[$, les restrictions de f_n à $\left[0,\sqrt{n/2}\right]$ et à $\left[\sqrt{n/2},+\infty\right[$ induisent des bijections à valeurs respectivement dans $\left[-1,f_n\left(\sqrt{n/2}\right)\right]$

et dans
$$\left]-1, f_n\left(\sqrt{n/2}\right)\right]$$
.

Enfin, les variations de f_n montrent un maximum atteint en $\sqrt{n/2}$ donc $f_n\left(\sqrt{n/2}\right) \ge f_n\left(1\right) > 0$. Donc cos intervalles $\left(\left[-1, f_n\left(\sqrt{n/2}\right)\right], f_n\left(\sqrt{n/2}\right)\right)$ contiennent 0.

0. Donc ces intervalles $(\left[-1, f_n\left(\sqrt{n/2}\right)\right] \text{ et } \left]-1, f_n\left(\sqrt{n/2}\right)\right]$) contiennent 0.

Donc par bijectivité, f_n s'annule un un unique réel $u_n \in \left[0, \sqrt{n/2}\right]$ et en un unique réel $v_n \in \left[\sqrt{n/2}, +\infty\right[$.

Puisque $n \ge 2$, $\sqrt{n/2} \ge 1$ donc $1 < v_n$ ($v_n \ne 1$ car $f_n(1) \ne 0$) et puisque $1 \in \left[0, \sqrt{n/2}\right]$ et par croissance de f_n sur cet intervalle, $u_n < 1$. Ainsi $u_n < 1 < v_n$.

7 Quelle est la limite de la suite (v_n) ?

Remarquons que $v_n \ge \sqrt{n/2}$ et que $\lim_{n \to +\infty} \sqrt{n/2} = +\infty$ donc par théorème de comparaison, $\lim_{n \to +\infty} v_n = +\infty$

8a Calculer $e^{-u_n^2}$ en fonction de u_n^n .

On a
$$f_n(u_n) = 0$$
 donc $3u_n^n e^{-u_n^2} = 1$ donc $e^{-u_n^2} = \frac{1}{3u_n^n}$.

8b En déduire le signe de $f_{n+1}(u_n)$.

Donc
$$f_{n+1}(u_n) = 3u_n^{n+1}e^{-u_n^2} - 1 = \frac{3u_n^{n+1}}{3u_n^n} - 1 = u_n - 1 < 0.$$

8c Déduire de ce qui précède la monotonie de $(u_n)_{n\geq 2}$.

Donc $f_{n+1}(u_n) < f_{n+1}(u_{n+1})$ et $u_n, u_{n+1} \in [0, 1] \subset \left[0, \sqrt{(n+1)/2}\right]$, intervalle sur-lequel f_{n+1} est croissante. Donc $u_n \le u_{n+1}$.

8d Montrer que la suite (u_n) est convergente. On note l sa limite.

 (u_n) est donc croissante et majorée (par 1) donc convergente vers l, d'après le théorème de la limite monotone.

9 Soit g_n définie sur $]0, +\infty[$ par : $\forall x > 0, g_n(x) = \ln(3) + n \ln(x) - x^2.$

9a Soit t > 0. Montrer que $g_n(t) = 0$ si et seulement si $f_n(t) = 0$.

On a pour t > 0:

$$g_n(t) = 0 \Leftrightarrow \ln(3) + n\ln(t) - t^2 = 0 \Leftrightarrow \ln(3t^n) = t^2$$

 $\Leftrightarrow 3t^n = e^{t^2} \Leftrightarrow 3t^n e^{-t^2} = 1 \Leftrightarrow f_n(t) = 0.$

9b On suppose que $l \neq 1$. Trouver une contradiction en utilisant ce qui précède. Qu'en conclut-on ? Supposons $l \neq 1$. On a $f_n(u_n) = 0$ donc $g_n(u_n) = 0$ donc $\ln(3) + n \ln(u_n) - u_n^2 = 0$ donc :

$$n = \frac{u_n^2 - \ln(3)}{\ln(u_n)}$$

Mais $\lim_{n \to +\infty} u_n = l$ donc $\lim_{n \to +\infty} \ln(u_n) = \ln(l) \neq 0$ car $l \neq 1$ donc $\lim_{n \to +\infty} \frac{u_n^2 - \ln(3)}{\ln(u_n)} = \frac{l^2 - \ln(3)}{\ln(l)} \in \mathbb{R}$ alors que $\lim_{n \to +\infty} n = +\infty$. Ceci est absurde donc l = 1.

9c Soit la suite $(w_n)_{n\geq 2}$ définie par $\forall n\geq 2,\, w_n=u_n-1$. Trouver, en utilisant un développement limité de $g_n\left(1+w_n\right)$, un équivalent simple de w_n . On a :

$$g_n (1 + w_n) = \ln(3) + n \ln(1 + w_n) - (1 + w_n)^2$$

= $\ln(3) + n \ln(1 + w_n) - 1 - 2w_n - w_n^2$

or $\lim_{n\to +\infty}w_n=0$ donc on peut substituer w_n à t dans le développement limité en 0 de $\ln{(1+t)}=t-\frac{t^2}{2}+o_o\left(t^2\right)$:

$$g_n(1+w_n) = \ln(3) + n\left(w_n - \frac{1}{2}w_n^2 + o_{+\infty}(w_n^2)\right) - 1 - 2w_n - w_n^2$$

Or $g_n(1 + w_n) = g_n(u_n) = 0$ donc:

$$\ln(3) + n\left(w_n - \frac{1}{2}w_n^2 + o_{+\infty}\left(w_n^2\right)\right) - 1 - 2w_n - w_n^2 = 0$$

$$\ln(3) - 1 + (n-2)w_n - \left(\frac{n}{2} - 1\right)w_n^2 + no_{+\infty}\left(w_n^2\right) = 0$$

$$w_n\left(n - 2 - \left(\frac{n}{2} - 1\right)w_n + no_{+\infty}\left(w_n\right)\right) = 1 - \ln(3)$$

donc

$$w_{n} = \frac{1 - \ln(3)}{n} \frac{n}{n - 2 - \left(\frac{n}{2} - 1\right) w_{n} + n o_{+\infty}(w_{n})}$$
$$= \frac{1 - \ln(3)}{n} \frac{1}{1 - 2/n - \left(\frac{1}{2} - 1/n\right) w_{n} + o_{+\infty}(w_{n})}$$

et comme $\lim_{n \to +\infty} w_n = 0$, on a $\lim_{n \to +\infty} \frac{1}{1 - 2/n - \left(\frac{1}{2} - 1/n\right) w_n + o_{+\infty}(w_n)} = 1$ donc $w_n \sim_{+\infty} 1 - \ln(3)$

Partie 3 : étude d'une équation différentielle. Soit $n \in \mathbb{N}^*$. Soit E_n l'équation différentielle $xy' - (n - 2x^2) y = n - 2x^2$. Soit H_n l'équation homogène associée à E_n .

10 Résoudre H_n sur $]0, +\infty[$ et sur $]-\infty, 0[$.

Sur chacun des ces deux intervalles, (H_n) s'écrit $y' - \frac{(n-2x^2)}{x}y = 0$, c'est une équation diffférentielle linéaire du premier ordre. On pose $a(x) = -\frac{(n-2x^2)}{x}$ puis $A(x) = \int_{-\infty}^{x} -\frac{(n-2t^2)}{t}dt = -n\ln(|x|) + x^2$, la solution générale de (H_n) sur $]0, +\infty[$ est donc $y(x) = \lambda e^{n\ln(|x|)-x^2} = \lambda x^n e^{-x^2}$, $\lambda \in \mathbb{R}$ et la solution générale de (H_n) sur $]-\infty, 0[$ est $y(x) = \mu e^{n\ln(|x|)-x^2} = \mu x^n e^{-x^2}$, $\mu \in \mathbb{R}$ (quitte à changer μ en $-\mu$). **11** En déduire les solutions de E_n sur $]0, +\infty[$ et sur $]-\infty, 0[$.

$$(E_n)$$
 se réécrit $y' - \frac{(n-2x^2)}{x}y = \frac{(n-2x^2)}{x};$

y(x) = -1 est solution évidente de E_n .

Si on ne s'en aperçoit pas, la méthode de variation de la constante s'applique : $y(x) = \lambda(x) x^n e^{-x^2}$, on a $y'(x) = \lambda'(x) x^n e^{-x^2} + n\lambda(x) x^{n-1} e^{-x^2} - 2x^{n+1}\lambda(x) e^{-x^2}$ donc :

y solution de
$$E_n \iff y' - \frac{(n-2x^2)}{x}y = \frac{(n-2x^2)}{x}$$

 $\Leftrightarrow \lambda'(x) x^n e^{-x^2} + n\lambda(x) x^{n-1} e^{-x^2} - 2x^{n+1}\lambda(x) e^{-x^2} - \frac{(n-2x^2)}{x}\lambda(x) x^n e^{-x^2}$
 $= \frac{(n-2x^2)}{x}$
 $\Leftrightarrow \lambda'(x) x^n e^{-x^2} = \frac{(n-2x^2)}{x} \Leftrightarrow \lambda'(x) = (n-2x^2) x^{-n-1} e^{x^2}$
On prend $\lambda(x) = \int^x (n-2t^2) t^{-n-1} e^{t^2} dt = -x^{-n} e^{x^2}$ d'où $y(x) = 1$

Ainsi la solution générale de E_n sur $]0, +\infty[$ est $y(x) = \lambda x^n e^{-x^2} - 1, \lambda \in \mathbb{R}$. Même calcul sur $]-\infty, 0[$.