D.M.9 pour 03 Avril 2025

Exercice 1 : On note F l'espace vectoriel des fonctions définies sur $J =]-1, +\infty[$, à valeurs réelles. Soit $p \in \mathbb{N}$. Pour tout $k \in [|-1, n|]$, on définit les fonctions f_k sur J par :

$$\forall x \in J, \ f_{-1}(x) = \ln(1+x) \ \text{et} \ \forall k \in [|0,p|], \ f_k(x) = \frac{1}{(1+x)^k}.$$

- 1 Sous-espace vectoriel engendré par ces fonctions.
- **1a** Soient $(a_k)_{k \in [|-1,p|]}$ des réels tels que $\sum_{k=-1}^p a_k f_k$ soit la fonction nulle. Démontrer que $a_{-1} = 0$.
- **1b** Démontrer alors que la famille $\mathcal{B} = (f_k)_{k \in [|-1,p|]}$ est libre. On note $E = Vect(\mathcal{B})$.
- **1c** En déduire la dimension de E.
- **2** On note u l'application qui à toute fonction f de E associe la fonction u(f) définie sur J par :

$$\forall x \in J, \ u(f)(x) = (1+x) f'(x)$$

- **2a** Déterminer pour tout $k \in [|-1, p|]$ les images de f_k par u.
- **2b** Vérifier que u est un endomorphisme de E.
- 2c Déterminer la noyau et l'image de u. Sont-ils suppplémentaires dans E? (justifiez votre réponse).
- **2d** Préciser $u^{-1}(\{f_{-1}\})$, l'ensemble des antécédents de f_{-1} .
- **2e** Déterminer la matrice M de u dans la base \mathcal{B} .
- **3** On note $H\left(t\right)=t-\ln\left(1+t\right)$. Montrer que H n'appartient pas à E mais que $H',H'',\ldots,H^{(p)}\in E$.
- **Exercice 2:** Dans tout l'exercice, n est un entier et $n \geq 3$. On note $E = \mathbb{R}_{n-1}[X]$ et $\mathcal{B} = (1, X, \dots, X^{n-1})$ la base canonique de E.

Soient a_1, \ldots, a_n des réels vérifiant $a_1 < a_2 < \cdots < a_n$.

- **1a** Montrer que l'application $T: E \to \mathbb{R}^n$ qui envoie $P \in E$ sur $T(P) = (P(a_1), \dots, P(a_n))$ est linéaire.
- **1b** Montrer que T est un isomorphisme de E sur \mathbb{R}^n .
- **2a** On note $\mathcal{E} = (\vec{e}_1, \dots, \vec{e}_n)$ la base canonique de \mathbb{R}^n et pour tout $i \in \{1, \dots, n\}$, $L_i = T^{-1}(\vec{e}_i)$, c'est-à dire l'unique polynôme dont l'image par T est \vec{e}_i .

Montrer que $\mathcal{B}' = (L_1, \dots, L_n)$ est une base de E puis déterminer les coordonnées d'un polynôme P quelconque de E dans cette base. Indication : on exprimera P dans cette base, puis on calculera T(P).

Dans toute la suite de l'exercice, on note $M = (m_{i,j})_{1 \leq i,j \leq n}$ la matrice de passage de la base \mathcal{B} à la base \mathcal{B}' .

1

2b L'une des réponses ci-dessous et l'une seulement est correcte. Préciser laquelle et justifier l'égalité :

réponse a :
$$M = \mathcal{M}at_{\mathcal{E},\mathcal{B}}\left(T^{-1}\right)$$

réponse b :
$$M = \mathcal{M}at_{\mathcal{B},\mathcal{E}}(T)$$

réponse c :
$$M = \mathcal{M}at_{\mathcal{E},\mathcal{B}'}(T^{-1})$$

réponse d :
$$M = \mathcal{M}at_{\mathcal{B},\mathcal{B}'}(T)$$

3 Dans cette question uniquement, on suppose que n = 3, $a_1 = 0$, $a_2 = 1$ et $a_3 = 2$.

3a Justifier que
$$L_1(X) = \frac{(X-1)(X-2)}{(-1)(-2)}$$
.

- **3b** En raisonnant de même sur les racines et le degré de L_2 et L_3 , déterminer L_2 et L_3 sous forme factorisée.
- **3c** Expliciter la matrice M.
- **3d** Résoudre l'équation MV = V d'inconnue $V = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$.
- **3e** En déduire tous les polynômes P de $\mathbb{R}_2[X]$ tels que $P(X) = P(0) + P(1)X + P(2)X^2$.
- 4 On revient au cas général n quelconque.

4a Etablir la relation
$$\sum_{i=1}^{n} L_i = 1$$
.

- **4b** Justifier que M est inversible puis en utilisant la question 2, expliciter M^{-1} (sous forme de tableau de nombres).
- **4c** Montrer que l'on a $\sum_{j=1}^{n} m_{1,j} = 1$. Montrer ensuite que pour tout $i \in [|2, n|]$, $\sum_{j=1}^{n} m_{i,j} = 0$
- **4d** Lorsque $a_1 = 1$, déterminer la somme des coefficients de chaque colonne de M.
- **5 Dans cette question, on suppose** $n \ge 4$ et que $a_1 = 0$, $a_2 = 1$ et $a_3 = 2$ (mais on ne connaît pas a_4, \ldots, a_n).

Soit
$$u$$
 l'application de E dans E définie par $\forall P \in E, u(P) = Q$ avec :

$$Q(X) = P(0) L_1(X) + P(1) L_2(X) + P(2) L_3(X)$$

- **5a** Vérifier que u est un endomorphisme de E.
- **5b** Déterminer $\ker(u)$.
- **5c** Montrer que dim $(\ker(u)) = n 3$.
- **5d** Déterminer $\operatorname{Im}(u)$.

5e $\ker(u)$ et $\operatorname{Im}(u)$ sont-ils supplémentaires ?

5f Déterminer la restriction $u_{|\text{Im}(u)}$ de l'endomorphisme u au sous-espace vectoriel $\text{Im}\,(u)$. Qu'en déduit-on in fine sur la nature de u?