D.S.1 samedi 28 Septembre 2024 (2 heures)

Exercice 1: Soient $a, b \in \mathbb{R}$. On considère la proposition (P) suivante :

$$(a \neq -1 \text{ et } b \neq -1) \Longrightarrow a+b+ab \neq -1.$$

1 Ecrire la contraposée de (P).

 $\mathbf{2}$ Montrer que la contraposée de (P) est vraie. Qu'en déduit-on pour (P) ?

3 Etudier la réciproque de (P).

Exercice 2 : Soit $f: \mathbb{N} \to \mathbb{N}$ une application telle que :

$$\forall n \in \mathbb{N}, \ f(n) \ge n \text{ et } \forall m \in \mathbb{N}, \ \exists n \in \mathbb{N} \ / \ m = f(n)$$

1 Montrer que f(0) = 0.

2 Soit $n \in \mathbb{N}$. On suppose que $\forall k \in [|0, n|]$, f(k) = k. Montrer que f(n + 1) = n + 1.

3 Conclure. On précisera bien les raisonnements utilisés.

Exercice 3: Soit $n \ge 2$, on pose:

$$\forall p \in [|0, n|], \ S_p = \sum_{k=0}^p \binom{n}{k}$$

1 Montrer que :

$$\forall p \in [|0, n-1|], \ S_p + S_{n-p-1} = 2^n$$

2 En déduire la valeur de $\sum_{p=0}^{n-1} S_p$.

Exercice 4:

1 Soit $y \in \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}$. Exprimer $\frac{\sin(3y)}{\sin(y)}$ en fonction de $\cos(2y)$.

2 Soit $n \in \mathbb{N}^*$. Calculer le produit :

$$P_n = \prod_{k=1}^n \left(1 + 2\cos\left(\frac{\pi}{3^k}\right) \right)$$

Exercice 5 : On considère la suite $u = (u_n)_{n \in \mathbb{N}} = (u_n)$ définie par :

$$u_0 = \frac{3}{2} \text{ et } \forall n \in \mathbb{N}, \ u_{n+1} = u_n^2 - u_n + 1$$

1 Montrer que la suite $u = (u_n)$ est croissante.

2 On est donc assurés que la suite $u=(u_n)$ possède une limite, finie ou infinie. A l'aide d'un raisonnement par l'absurde, prouver que cette limite est infinie.

- **3a** Calculer u_1 et u_2 .
- **3b** Montrer par récurrence que $\forall n \in \mathbb{N}, u_n \geq n$. Quel résultat cette inégalité permet-elle de retrouver ?
- **4a** Exprimer pour tout $n \in \mathbb{N}$ uniquement en fonction de u_n la quantité :

$$\frac{1}{u_{n+1}-1}-\frac{1}{u_n-1}.$$

4b En déduire une expression simplifiée pour tout $n \in \mathbb{N}$ de :

$$S_n = \sum_{k=0}^n \frac{1}{u_k}.$$

Exercice 6 : Résoudre l'équation suivante d'inconnue complexe z :

$$(E): z^6 + (1-3i)z^3 - 4 = 0$$

Exercice 7: Soit $z \in \mathbb{C}^*$. On pose a = z, $b = \overline{z}$ et $c = \frac{z^2}{\overline{z}}$.

On munit le plan d'un repère orthonormé $(O, \vec{e_1}, \vec{e_2})$ et on note A, B et C les points images de a, b et c.

1 Soit ρ le module de z et θ un argument de z.

Donner les écritures trigonométriques de a, b et c en fonction de ρ et θ .

- ${\bf 2}$ Déterminer une condition nécessaire et suffisante sur ρ et θ pour que :
- (a) les points A et B soient distincts;
- (b) les points A et C soient distincts;
- (c) les points B et C soient distincts.
- **3** En déduire une condition nécessaire et suffisante pour que les points A, B et C soient deux à deux distincts. On suppose désormais que cette condition est réalisée.
- 4 Montrer que AB = AC.
- 5 Placer le point A dans le plan (n'importe où hors de O). Construire le point B puis le point C. On laissera les traits de construction et on justifiera les étapes à l'aide des résultats des questions précédentes.
- **6** On pose $Z = \frac{c a}{c b}$.
- **6a** Montrer que $Z=f\left(\theta\right)e^{i\theta}$ où $f\left(\theta\right)$ est une expression de θ que l'on précisera.
- **6b** Résoudre l'équation |Z| = 1 d'inconnue θ .
- 7 Déterminer l'ensemble des points du plan en-lesquels placer le point A pour que le triangle ABC soit équilatéral.

2

Corrigé de l'exercice 1 : Soient $a, b \in \mathbb{R}$. On considère la proposition (P) suivante :

$$(a \neq -1 \text{ et } b \neq -1) \Longrightarrow a + b + ab \neq -1.$$

1 Ecrire la contraposée de (P).

Cette contraposée s'écrit :

$$a+b+ab=-1 \Longrightarrow (a=-1 \text{ ou } b=-1)$$

 $\mathbf{2}$ Montrer que la contraposée de (P) est vraie. Qu'en déduit-on pour (P) ?

On suppose que a + b + ab = -1. Alors 1 + a + b(1 + a) = 0 donc (1 + a)(1 + b) = 0 donc 1 + a = 0 ou 1 + b = 0 i.e., a = -1 ou b = -1.

Donc la contraposée de (P) est vraie. Donc (P) est vraie.

3 Etudier la réciproque de (P).

Supposons $a+b+ab \neq -1$. Alors $(1+a)(1+b) \neq 0$ donc $1+a \neq 0$ et $1+b \neq 0$ donc $a \neq -1$ et $b \neq -1$.

Donc la réciproque de (P) est vraie.

Exercice 2 : Soit $f: \mathbb{N} \to \mathbb{N}$ une application telle que :

$$\forall n \in \mathbb{N}, \ f(n) \ge n \text{ et } \forall m \in \mathbb{N}, \ \exists n \in \mathbb{N} \ / \ m = f(n)$$

1 Montrer que f(0) = 0.

 $m=0\in\mathbb{N}$ donc m admet un antécédent par f (c'est ce qu'exprime la deuxième quantification dans la propriété supposée vérifiée par f). C'est-à dire qu'il existe $n\in\mathbb{N}$ tel que f(n)=0. Or si n>0 alors $f(n)\geq n$ donc f(n)>0, ce qui est absurde donc $n\leq 0$. Or $n\in\mathbb{N}$ donc

n = 0. Ainsi, f(0) = 0.

2 Soit $n \in \mathbb{N}$. On suppose que $\forall k \in [[0, n]]$, f(k) = k. Montrer que f(n + 1) = n + 1.

Soit $r \in \mathbb{N}$ un antécédent de n+1 par f: f(r) = n+1.

On a $f(r) \ge r$ donc $r \le n+1$. Si $r \le n$, alors $r \in [|0,n|]$ donc f(r) = r < n+1. Absurde. Donc $r \ge n+1$.

Mais $r \le n+1$ donc r=n+1. Ainsi, f(n+1)=n+1.

3 Conclure. On précisera bien les raisonnements utilisés.

Les questions 1 et 2 sont respectivement l'initialisation et l'hérédité d'une récurrence **forte** sur $n \in \mathbb{N}$ portant sur la propriété f(n) = n.

Donc grâce à ce principe de récurrence, on conclut $\forall n \in \mathbb{N}, f(n) = n$.

Exercice 3: Soit $n \ge 2$, on pose:

$$\forall p \in [|0, n|], \ S_p = \sum_{k=0}^p \binom{n}{k}$$

1 Montrer que:

$$\forall p \in [|0, n-1|], \ S_p + S_{n-p-1} = 2^n$$

Soit $p \in [|0, n - 1|]$. On a:

$$S_{n-p-1} = \sum_{k=0}^{n-p-1} \binom{n}{k}$$

$$= \sum_{l=p+1}^{n} \binom{n}{n-l} \text{ par changement d'indice } l = n-k$$

$$= \sum_{l=p+1}^{n} \binom{n}{l} \text{ par symétrie des coefficients binomiaux}$$

Donc:

$$S_{p} + S_{n-p-1} = \sum_{k=0}^{p} \binom{n}{k} + \sum_{l=p+1}^{n} \binom{n}{l} = \sum_{k=0}^{n} \binom{n}{k}$$
$$= \sum_{k=0}^{n} \binom{n}{k} 1^{k} 1^{n-k} = (1+1)^{n} = 2^{n} \text{ (binome de Newton)}$$

2 En déduire la valeur de $\sum_{p=0}^{n-1} S_p$.

Par changement d'indice k = n - 1 - p, on a :

$$\sum_{p=0}^{n-1} S_p = \sum_{k=0}^{n-1} S_{n-k-1} = \sum_{p=0}^{n-1} S_{n-p-1} \text{ (indice muet)}$$

Donc:

$$2\sum_{p=0}^{n-1} S_p = \sum_{p=0}^{n-1} S_p + \sum_{p=0}^{n-1} S_{n-p-1} = \sum_{p=0}^{n-1} (S_p + S_{n-p-1})$$
$$= \sum_{p=0}^{n-1} 2^n \text{ d'après 1.})$$
$$= n2^n$$

Donc:

$$\sum_{p=0}^{n-1} S_p = n2^{n-1}$$

Exercice 4:

1 Soit $y \in \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}$. Exprimer $\frac{\sin(3y)}{\sin(y)}$ en fonction de $\cos(2y)$.

L'hypothèse sur y garantit $\sin(y) \neq 0$. On a :

$$\frac{\sin(3y)}{\sin(y)} = \frac{\sin(y+2y)}{\sin(y)} = \frac{\sin(y)\cos(2y) + \cos(y)\sin(2y)}{\sin(y)} = \cos(2y) + \frac{2\sin(y)\cos^2(y)}{\sin(y)}$$
$$= \cos(2y) + 2\cos^2(y) = \cos(2y) + 1 + \cos(2y) = 1 + 2\cos(2y)$$

2 Soit $n \in \mathbb{N}^*$. Calculer le produit :

$$P_n = \prod_{k=1}^n \left(1 + 2\cos\left(\frac{\pi}{3^k}\right) \right)$$

On a donc:

$$P_{n} = \prod_{k=1}^{n} \left(1 + 2 \cos \left(\frac{\pi}{3^{k}} \right) \right) = \prod_{k=1}^{n} \frac{\sin \left(3 \frac{\pi}{2 \cdot 3^{k}} \right)}{\sin \left(\frac{\pi}{2 \cdot 3^{k}} \right)} = \prod_{k=1}^{n} \frac{\sin \left(\frac{1}{3^{k-1}} \frac{\pi}{2} \right)}{\sin \left(\frac{1}{3^{k}} \frac{\pi}{2} \right)}$$

$$= \frac{\sin \left(\frac{\pi}{2} \right)}{\sin \left(\frac{1}{3^{n}} \frac{\pi}{2} \right)} \text{ par produit téléscopique}$$

$$= \frac{1}{\sin \left(\frac{\pi}{2 \cdot 3^{n}} \right)}$$

Exercice 5 : On considère la suite $u = (u_n)_{n \in \mathbb{N}}$ définie par :

$$u_0 = \frac{3}{2} \text{ et } \forall n \in \mathbb{N}, \ u_{n+1} = u_n^2 - u_n + 1$$

1 Montrer que la suite $u = (u_n)$ est croissante.

On a pour tout $n \in \mathbb{N}$;

$$u_{n+1} - u_n = u_n^2 - 2u_n + 1 = (u_n - 1)^2 \ge 0$$

donc (u_n) est croissante.

2 On est donc assurés que la suite $u = (u_n)$ possède une limite, finie ou infinie. A l'aide d'un raisonnement par l'absurde, prouver que cette limite est infinie.

Supposons par l'absurde que cette limite est finie et posons $l = \lim_{n \to +\infty} u_n$. Alors $\lim_{n \to +\infty} \left(u_n^2 - u_n + 1\right) = l^2 - l + 1$ et $\lim_{n \to +\infty} u_{n+1} = l$ donc par unicité de la limite :

$$l^2 - l + 1 = l$$

donc $l^2 - 2l + 1 = 0$, i.e. $(l-1)^2 = 0$ donc l = 1. Mais (u_n) est croissante et $u_0 = \frac{3}{2}$ donc pour tout $n \in \mathbb{N}$, $u_n \ge \frac{3}{2}$ et puisque (u_n) converge vers l, par passage à la limite, $l \ge \frac{3}{2}$, donc $1 \ge \frac{3}{2}$, ce qui est absurde.

Donc cette limite est infinie, $\lim_{n\to+\infty} u_n = +\infty$.

3a Calculer u_1 et u_2 .

On a:

$$u_1 = \frac{9}{4} - \frac{3}{2} + 1 = \frac{7}{4}$$

$$u_2 = \frac{49}{16} - \frac{7}{4} + 1 = \frac{37}{16}$$

3b Montrer par récurrence que $\forall n \in \mathbb{N}, u_n \geq n$.

Quel résultat cette inégalité permet-elle de retrouver ? Montrons par récurrence sur $n \geq 2$ que $u_n \geq n$.

• Initialisation : $n=2, u_2=\frac{37}{16}\geq 2.$

• Hérédité : soit $n \ge 2$. On suppose $u_n \ge n$. On a alors :

$$u_{n+1} = u_n^2 - u_n + 1 = u_n (u_n - 1) + 1$$

 $\geq n(n-1) + 1$ (on multiplie des inég à termes **positifs**)

Or:

$$n(n-1) + 1 - (n+1) = n^2 - 2n = n(n-2) \ge 0 \text{ car } n \ge 2$$

donc:

$$u_{n+1} \ge n+1$$

• Donc par récurrence sur $n \geq 2$, pour tout $n \geq 2$, $u_n \geq n$. Mais ceci est aussi vrai pour n = 0 et n = 1 car $u_0 = \frac{3}{2} \geq 0$ et $u_1 = \frac{7}{4} \geq 1$ donc $\forall n \in \mathbb{N}, u_n \geq n$.

4a Exprimer pour tout $n \in \mathbb{N}$ uniquement en fonction de u_n la quantité :

$$\frac{1}{u_{n+1}-1} - \frac{1}{u_n-1}.$$

On a:

$$\frac{1}{u_{n+1}-1} - \frac{1}{u_n-1} = \frac{1}{u_n^2 - u_n} - \frac{1}{u_n-1} = \frac{1-u_n}{u_n^2 - u_n} = -\frac{1}{u_n}$$

4b En déduire une expression simplifiée pour tout $n \in \mathbb{N}$ de :

$$S_n = \sum_{k=0}^n \frac{1}{u_k}.$$

On a donc:

$$S_n = \sum_{k=0}^n \frac{1}{u_k} = \sum_{k=0}^n \left(\frac{1}{u_k - 1} - \frac{1}{u_{k+1} - 1} \right) = \frac{1}{u_0 - 1} - \frac{1}{u_{n+1} - 1} = 2 - \frac{1}{u_{n+1} - 1}.$$

Exercice 6: Résoudre l'équation suivante d'inconnue complexe z:

$$(E): z^6 + (1-3i)z^3 - 4 = 0$$

Posons $Z=z^3$ et résolvons $(E'):Z^2+(1-3i)Z-4=0$, trinome du second degré de discriminant $\Delta=(1-3i)^2+16=8-6i$.

Cherchons les racines carrées de Δ sous la forme $\delta = a + ib$, $a, b \in \mathbb{R}$:

$$\delta^{2} = \Delta \Leftrightarrow \begin{cases} a^{2} - b^{2} = 8 \\ 2ab = -6 \\ a^{2} + b^{2} = \sqrt{64 + 36} = 10 \end{cases} \Leftrightarrow \begin{cases} a^{2} = 9 \\ b^{2} = 1 \\ ab = -3 \end{cases}$$
$$\Leftrightarrow \begin{cases} a = \pm 3 \\ b = -\frac{a}{3} \Leftrightarrow \delta = \pm (3 - i) \end{cases}$$

donc les solutions de (E') sont $Z_1 = \frac{3i-1+3-i}{2} = 1+i$ et $Z_2 = \frac{3i-1-3+i}{2} = -2+2i$. On a alors :

$$z^{6} + (1 - 3i) z^{3} - 4 = 0 \Leftrightarrow Z^{2} + (1 - 3i) Z - 4 = 0 \Leftrightarrow z^{3} = 1 + i \text{ ou } z^{3} = -2 + 2i$$

$$\Leftrightarrow z^{3} = \sqrt{2}e^{i\pi/4} \text{ ou } z^{3} = 2\sqrt{2}e^{3i\pi/4}$$

$$\Leftrightarrow z = 2^{1/6}e^{i\pi/12} \text{ ou } z = 2^{1/6}je^{i\pi/12} \text{ ou } z = 2^{1/6}j^{2}e^{i\pi/12}$$
ou $z = \sqrt{2}e^{i\pi/4}$ ou $z = \sqrt{2}je^{i\pi/4}$ ou $z = \sqrt{2}j^{2}e^{i\pi/4}$

où $j = e^{2i\pi/3}$.

Exercice 7: Soit $z \in \mathbb{C}^*$. On pose a = z, $b = \overline{z}$ et $c = \frac{z^2}{\overline{z}}$.

On munit le plan d'un repère orthonormé $(O, \vec{e_1}, \vec{e_2})$ et on note A, B et C les points images de a, b et c.

1 Soit ρ le module de z et θ un argument de z.

Donner les écritures trigonométriques de a, b et c en fonction de ρ et θ .

On a:

$$a = \rho e^{i\theta}, \ b = \rho e^{-i\theta} \ \text{et} \ c = \frac{\rho^2 e^{2i\theta}}{\rho e^{-i\theta}} = \rho e^{3i\theta}$$

- ${\bf 2}\,$ Déterminer une condition nécessaire et suffisante sur ρ et θ pour que :
- (a) les points A et B soient distincts;
- (b) les points A et C soient distincts;
- (c) les points B et C soient distincts.

Les affixes de ces trois points ont même module donc les points sont distincts si et seulement si leurs arguments sont distincts modulo 2π donc :

A et B sont distincts
$$\Leftrightarrow \theta \neq -\theta$$
 $[2\pi] \Leftrightarrow \theta \neq 0$ $[\pi]$

A et C sont distincts
$$\Leftrightarrow \theta \neq 3\theta \quad [2\pi] \Leftrightarrow \theta \neq 0 \quad [\pi]$$

$$B \text{ et } C \text{ sont distincts } \Leftrightarrow -\theta \neq 3\theta \quad [2\pi] \Leftrightarrow \theta \neq 0 \quad \left[\frac{\pi}{2}\right].$$

3 En déduire une condition nécessaire et suffisante pour que les points A, B et C soient deux à deux distincts. On suppose désormais que cette condition est réalisée.

Donc A, B et C sont deux à deux distincts si et seulement si $\theta \neq 0$ $\left[\frac{\pi}{2}\right]$.

4 Montrer que AB = AC.

On a:

$$AB = |b - a| = \left| \rho \left(e^{-i\theta} - e^{i\theta} \right) \right|$$

$$AC = |c - a| = \left| \rho \left(e^{3i\theta} - e^{i\theta} \right) \right| = \rho \left| e^{2i\theta} \right| \left| e^{i\theta} - e^{-i\theta} \right| = \rho \left| \left(e^{-i\theta} - e^{i\theta} \right) \right| = AB$$

5 Placer le point A dans le plan (n'importe où hors de O). Construire le point B puis le point C. On laissera les traits de construction et on justifiera les étapes à l'aide des résultats des questions précédentes.

On place A sur un point quelconque différent de O. On place B le symétrique de A par rapport à l'axe des abscisses. On trace le cercle de centre O et de rayon OA. On place C sur l'intersection de ce cercle avec le cercle de centre A et de rayon AB.

- **6** On pose $Z = \frac{c a}{c b}$.
- **6a** Montrer que $Z=f\left(\theta\right)e^{i\theta}$ où $f\left(\theta\right)$ est une expression de θ que l'on précisera.

On a:

$$Z = \frac{c-a}{c-b} = \frac{\rho e^{3i\theta} - \rho e^{i\theta}}{\rho e^{3i\theta} - \rho e^{-i\theta}} = \frac{e^{2i\theta} \left(e^{i\theta} - e^{-i\theta}\right)}{e^{i\theta} \left(e^{2i\theta} - e^{-2i\theta}\right)} = e^{i\theta} \frac{2i\sin\left(\theta\right)}{2i\sin\left(2\theta\right)} = \frac{\sin\left(\theta\right)}{\sin\left(2\theta\right)} e^{i\theta}$$

6b Résoudre l'équation |Z| = 1 d'inconnue θ .

On a:

$$|Z| = 1 \Leftrightarrow \left| \frac{\sin(2\theta)}{\sin(\theta)} \right| = 1 \Leftrightarrow |2\cos(\theta)| = 1 \Leftrightarrow \cos(\theta) = \pm \frac{1}{2}$$
$$\Leftrightarrow \theta \equiv \frac{\pi}{3} \left[\frac{\pi}{3} \right] \operatorname{car} \theta \neq 0 \left[\frac{\pi}{2} \right].$$

7 Déterminer l'ensemble des points du plan en-lesquels placer le point A pour que le triangle ABC soit équilatéral.

Compte tenu de AC = BC, on a :

ABC équilatéral $\Leftrightarrow AC = BC \Leftrightarrow |Z| = 1 \Leftrightarrow \theta \equiv \frac{\pi}{3} \left[\frac{\pi}{3} \right].$

Comte tenu de $\theta \neq 0$ $\left[\frac{\pi}{2}\right]$, les points A pour-lesquels le triangle ABC est équilatéral sont ceux d'affixes ayant pour argument $\frac{\pi}{3}, -\frac{\pi}{3}, \frac{2\pi}{3}$ ou $-\frac{2\pi}{3}$.

Dit autrement, ce sont les points situés sur les droites (OM) et (ON) où M et N sont les popints d'affixes j et j^2 .