D.S.4 samedi 14 Décembre 2024 (3h)

Exercice 1: Soit la fonction f définie par $\forall x \in \mathbb{R}^+$, $f(x) = \frac{3}{1+x^2}$.

- **1** Etudier les variations de f sur \mathbb{R}^+ .
- **2** Montrer que l'équation f(x) = x pour $x \in \mathbb{R}^+$ est équivalente à une équation polynômiale en x. En déduire que cette équation admet une unique solution dans \mathbb{R}^+ notée α . Vérifer que $1 < \alpha < 2$.
- **3** On définit la fonction h sur \mathbb{R}^+ par $\forall x \in \mathbb{R}^+$, $h(x) = (f \circ f)(x) x$. On admet que l'on peut factoriser h sous la forme :

$$h(x) = -\frac{(x^2 - 3x + 1)(x^3 + x - 3)}{(x^2 + 1)^2 + 9}$$

- **3a** Montrer que l'équation h(x) = 0 a exactement trois solutions distinctes α, β, β' avec $0 < \beta < \alpha < \beta'$ où α est le réel défini ci-dessus.
- **3b** Déterminer le signe de h sur \mathbb{R}^+ .
- **3c** Montrer (avec un minimum de calculs svp !!) que $f(\beta) = \frac{1}{\beta} = \beta'$ et $f(\beta') = \frac{1}{\beta'} = \beta$. On considère désormais la suite (u_n) définie par : $\begin{cases} u_0 \ge 0 \\ \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n) \end{cases}$
- 4 Montrer que la suite (u_n) est une suite à termes positifs.
- **5** Pas de question 5.
- **6a** Montrer que $f \circ f$ est croissante sur \mathbb{R}^+ .
- **6b** Montrer que quelle que soit la valeur donnée à u_0 , la suite $(u_{2n})_{n\in\mathbb{N}}$ est monotone. Déterminer si la suite $(u_{2n+1})_{n\in\mathbb{N}}$ est aussi monotone et le cas échéant, comparer son sens de variations à celui de la suite $(u_{2n})_{n\in\mathbb{N}}$ (justifiez vos réponses)?
- **6c** On appelle l une **éventuelle limite réelle** de la suite (u_{2n}) . Montrer que $l \in \{\alpha, \beta, \beta'\}$
- 6d Si l' est une **éventuelle limite réelle** de la suite (u_{2n+1}) , quelles sont les valeurs possibles de l'?

 On étudie désormais la convergence de la suite (u_n) selon quelques cas particuliers de valeurs de u_0 .
- 7 On suppose que $u_0 = \alpha$. Quelle est la particularité de la suite (u_n) dans ce cas ? Est-elle convergente ?
- 8 On suppose que $u_0 \in \{\beta, \beta'\}$. Quelle est la particularité des suites extraites (u_{2n}) et (u_{2n+1}) ? Que peut-on en déduire pour la convergence de la suite (u_n) ?
- **9** Dans cette question, on suppose que $u_0 \in [0, \beta]$.
- **9a** Montrer que la suite (u_{2n}) est à valeurs dans $[0, \beta]$.

- **9b** Montrer que la suite (u_{2n+1}) est à valeurs dans $[\beta', 3]$.
- **9c** En utilisant les variations des suites (u_{2n}) et (u_{2n+1}) , montrer qu'elles sont convergentes et déterminer leur limite respective.
- **9d** La suite (u_n) est-elle convergente?

Exercice 2 : injections, surjections, bijections. Soit E un ensemble. Les deux questions sont indépendantes.

- 1 On note Id_E l'application identité de E dans E ($\forall x \in E, Id_E(x) = x$). Soit f de E dans E telle que $f \circ f \circ f = Id_E$. Montrer que f est bijective.
- **2** Soient A et B deux parties de E. On note respectivement $\mathcal{P}(E)$, $\mathcal{P}(A)$ et $\mathcal{P}(B)$ les ensembles des parties de E, A et B.

Soit Φ l'application :

$$\Phi: \begin{array}{c} \mathcal{P}(E) \to \mathcal{P}(A) \times \mathcal{P}(B) \\ X \mapsto (X \cap A, X \cap B) \end{array}$$

- **2a** Monter que Φ est injective si et seulement si $A \cup B = E$. (on procédera par double implication).
- **2b** Déterminer de même une condition nécessaire et suffisante sur A et B pour que Φ soit surjective. On énoncera un résultat que l'on démontrera ensuite par double implication.

Problème: moyenne arithmético-géométrique.

- **Préliminaire :** Soit $f:]0, +\infty[\to \mathbb{R}$ une fonction croissante telle que la fonction $g:]0, +\infty[\to \mathbb{R}$ définie par $g(x) = \frac{f(x)}{x}$ est décroissante.
- **1a** Soit $x_0 \in]0, +\infty[$. Montrer que f est continue à droite en $x_0 : \lim_{x \to x_0^+} f(x) = f(x_0)$.
- **1b** Montrer que f est continue sur $]0, +\infty[$.
- Partie 1 : Soient a,b deux réels positifs. On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par :

$$u_0 = a, \ v_0 = b \text{ et } \forall n \in \mathbb{N}, \ \begin{cases} u_{n+1} = \sqrt{u_n v_n} \\ v_{n+1} = \frac{u_n + v_n}{2} \end{cases}.$$

- **2** On se propose de montrer que (u_n) et (v_n) convergent vers une même limite.
- **2a** Montrer que pour tout $n \in \mathbb{N}^*$, $0 \le u_n \le v_n$.
- **2b** Montrer que (u_n) et (v_n) sont monotones à partir de $n \ge 1$ et de sens de monotonie contraires.
- **2c** Montrer que $\forall n \in \mathbb{N}^*, 0 \leq v_n u_n \leq \frac{v_1 u_1}{2^{n-1}}$.
- 2d Conclure.

La limite commune à ces deux suites est appelée moyenne arithmético-géométrique de a et b. Elle sera notée $M\left(a,b\right)$.

- **2e** Déterminer M(a,a) et M(0,b) pour $a,b \in \mathbb{R}^+$. Dans la suite du problème, on notera $(u_n(a,b))_{n\in\mathbb{N}}$ et $(v_n(a,b))_{n\in\mathbb{N}}$ les deux suites précédemment définies. Cette notation permet de comparer ces suites définies relativement à des valeurs initiales (a et b) différentes.
- **3** On se propose d'établir quelques propriétés utiles de la fonction $(a,b) \longmapsto M(a,b)$.
- **3a** Montrer que pour tous $a, b \in \mathbb{R}^+ : M(a, b) = M(b, a)$.
- **3b** Montrer que pour tous $a, b \in \mathbb{R}^+$: $\forall \lambda \in \mathbb{R}^+$, $M(\lambda a, \lambda b) = \lambda M(a, b)$.
- **3c** Montrer que pour tous $a, b \in \mathbb{R}^+ : M\left(a, b\right) = M\left(\sqrt{ab}, \frac{a+b}{2}\right)$.
- **3d** Montrer que pour tous $a, b \in \mathbb{R}^+ : \sqrt{ab} \le M(a, b) \le \frac{a+b}{2}$.
- **Partie 2 :** On considère ici la fonction φ définie sur \mathbb{R}^+ par $\varphi(x) = M(1, x)$.
- **4** Donner $\varphi(0)$ et $\varphi(1)$.
- **5** On désire prouver que la fonction φ est croissante sur \mathbb{R}^+ . Pour cela on considère $0 \le x < y$ deux réels.
- **5a** Montrer que $\forall n \in \mathbb{N}, u_n(1, x) \leq u_n(1, y)$ et $v_n(1, x) \leq v_n(1, y)$.
- **5b** Conclure.
- **6** On étudie ici la continuité de φ sur \mathbb{R}^+ .
- **6a** Montrer que $\forall x > 0, \ \varphi(x) = x\varphi\left(\frac{1}{x}\right)$.
- **6b** Montrer que φ est continue sur $]0, +\infty[$.
- **6c** Montrer que $\forall x \geq 0, \ \varphi(x) = \frac{1+x}{2} \varphi\left(\frac{2\sqrt{x}}{1+x}\right).$
- **6d** En déduire que φ est continue à droite en $0:\lim_{x\to 0^+}\varphi\left(x\right)=\varphi\left(0\right)$.
- 7 On étudie ici le comportement de φ en $+\infty$.
- **7a** Montrer que $\forall x \in \mathbb{R}^+, \sqrt{x} \le \varphi(x) \le \frac{1+x}{2}$.
- **7b** Etudier la limite de φ en $+\infty$.
- 8 Représenter sur un même graphe les allures des fonctions $x \longmapsto \sqrt{x}, x \longmapsto \varphi(x)$ et $x \longmapsto \frac{1+x}{2}$.
- ${\bf 9}\,$ Etudier la dérivabilité de φ en 0 à droite et en 1.

Corrigé de l'exercice 1 : Soit la fonction f définie par $\forall x \in \mathbb{R}^+, f(x) = \frac{3}{1+x^2}$.

1 Etudier les variations de f sur \mathbb{R}^+ .

f est définie et dérivable sur \mathbb{R} comme fonction rationnelle de dénominateur jamais nul et $\forall x \in \mathbb{R}, f'(x) = \frac{-6x}{(1+x^2)^2}$ est du signe de -x donc f est strictement décroissante sur \mathbb{R}^+ .

2 Montrer que l'équation f(x) = x pour $x \in \mathbb{R}^+$ est équivalente à une équation polynômiale en x. En déduire que cette équation admet une unique solution dans \mathbb{R}^+ notée α . Vérifer que $1 < \alpha < 2$. On a :

$$f(x) = x \Leftrightarrow 3 = x(1+x^2) \Leftrightarrow x^3 + x - 3 = 0 \Leftrightarrow g(x) = 0$$

en posant $g(x) = x^3 + x - 3$. On a $g'(x) = 3x^2 + 1 > 0$ donc g est strictement croissante sur \mathbb{R}^+ et g(1) = -1 < 0 et g(2) = 7 > 0 donc g change de signe sur [1,2], est continue et strictement croissante donc d'après le corollaire du TVI, l'équation g(x) = 0 admet une unique solution $\alpha \in]1,2[$. Par monotonie de g, α est l'unique solution de g(x) = 0 donc aussi de l'équation f(x) = x dans \mathbb{R}^+ .

3 On définit la fonction h sur \mathbb{R}^+ par $\forall x \in \mathbb{R}^+$, $h(x) = (f \circ f)(x) - x$. On admet que l'on peut factoriser h sous la forme :

$$h(x) = -\frac{(x^2 - 3x + 1)(x^3 + x - 3)}{(x^2 + 1)^2 + 9}$$

3a Montrer que l'équation h(x) = 0 a exactement trois solutions distinctes α, β, β' avec $0 < \beta < \alpha < \beta'$ où α est le réel défini ci-dessus.

On a:

$$h(x) = 0 \Leftrightarrow (x^2 - 3x + 1)(x^3 + x - 3) = 0$$

$$\Leftrightarrow (x^2 - 3x + 1) = 0 \text{ ou } (x^3 + x - 3) = 0$$

$$\Leftrightarrow x = \alpha \text{ ou } x = \beta = \frac{3 - \sqrt{5}}{2} \text{ ou } x = \beta' = \frac{3 + \sqrt{5}}{2} \text{ (on a } \Delta = 9 - 4 = 5)$$

Or $0 < \beta < 1$ car $0 < 3 - \sqrt{5} < 2$ car $\sqrt{5} > 1$ et $\beta' > 2$ car $3 + \sqrt{5} > 4$ donc on a bien $0 < \beta < \alpha < \beta'$.

3b Déterminer le signe de h sur \mathbb{R}^+ .

Le dénominateur est toujours positif. Le facteur $x^3 + x - 3$ est négatif pour $0 < x < \alpha$ et positif pour $x > \alpha$ et $x^2 - 3x + 1$ est positif pour $0 < x < \beta$ et $x > \beta'$ d'où le signe de h:

x	0	β	α	β'	$+\infty$
$x^3 + x - 3$	_	_	0 +		+
$x^2 - 3x + 1$	+	_	_		+
$h\left(x\right)$	+	_	+		_

3c Montrer que $f(\beta) = \frac{1}{\beta} = \beta'$ et $f(\beta') = \frac{1}{\beta'} = \beta$.

On peut calculer directement avec les valeurs de β et β' mais il y a mieux :

$$h(\beta) = 0 \text{ donc } f(f(\beta)) = \beta$$
$$\text{donc } f(f(f(\beta))) = \frac{\pi}{5} f(\beta) \text{ donc } h(f(\beta)) = 0$$

donc $f(\beta) = \beta, \alpha \text{ ou } \beta'$.

De même, on obtient que f(a) et $f(\beta')$ sont l'un des 3 nombres β, α ou β' .

Or $0 < \beta < \alpha < \beta'$ et f est strictement décroissante sur \mathbb{R}^+ donc $f(\beta') < f(\alpha) < f(\beta)$ donc :

$$f(\beta) = \beta' \text{ et } f(\beta') = \beta$$

Enfin
$$\beta \beta' = \frac{3 - \sqrt{5}}{2} \frac{3 + \sqrt{5}}{2} = \frac{9 - 5}{4} = 1$$
 donc :

$$f(\beta) = \frac{1}{\beta} = \beta' \text{ et } f(\beta') = \frac{1}{\beta'} = \beta$$

On considère désormais la suite (u_n) définie par : $\begin{cases} u_0 \geq 0 \\ \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n) \end{cases}$

4 Montrer que la suite (u_n) est une suite à termes positifs.

Pas de récurrence par pitié! $u_0 \ge 0$ et pour $n \ge 1$, $u_n = f(u_{n-1}) = \frac{3}{1 + u_{n-1}^2} \ge 0$.

- **5a** On suppose que $u_0 = 1$. Calculer les valeurs de u_1 et u_2 . La suite (u_n) est-elle monotone ? On a $u_1 = \frac{3}{1+1} = \frac{3}{2}$ et $u_2 = \frac{3}{1+9/4} = \frac{12}{13}$ donc $u_2 < u_0 < u_1$ donc (u_n) n'est ni croissante ni décroissante ie pas monotone.
- **5b** On suppose que $u_0 = 2$. Calculer les valeurs de u_1 et u_2 . La suite (u_n) est-elle monotone? On a $u_1 = \frac{3}{1+4} = \frac{3}{5}$ et $u_2 = \frac{3}{1+9/25} = \frac{75}{34}$. On a $u_1 < u_2 < u_0$ donc la suite (u_n) n'est pas monotone.
- **6a** Montrer que $f \circ f$ est croissante sur \mathbb{R}^+ . f est strictement décroissante sur \mathbb{R}^+ donc $f \circ f$ est croissante (strictement) sur \mathbb{R}^+ .
- **6b** Montrer que quelle que soit la valeur donnée à u_0 , la suite $(u_{2n})_{n\in\mathbb{N}}$ est monotone. Déterminer si la suite $(u_{2n+1})_{n\in\mathbb{N}}$ est aussi monotone et le cas échéant, comparer son sens de variations à celui de la suite $(u_{2n})_{n\in\mathbb{N}}$ (justifiez vos réponses)?

Notons $v_n = u_{2n}$ et $w_n = u_{2n+1}$. On a alors pour tout $n \in \mathbb{N}$, $v_{n+1} = (f \circ f)(v_n)$ et $w_{n+1} = (f \circ f)(w_n)$.

- 1er cas : $v_0 \ge v_1$. Alors une récurrence (vue en exercice) montre en utilisant que $f \circ f$ est croissante que pour tout $n \in \mathbb{N}$, $v_n \ge v_{n+1}$. Vous devez bien sûr la rédiger!!
- 2ème cas : $v_1 \geq v_0$. Idem !! f est décroissante sur \mathbb{R}^+ donc si $v_n \geq v_{n+1}$ alors $f(v_n) \leq f(v_{n+1})$ ie $w_n \leq w_{n+1}$. Dans le premier cas, (w_n) sera donc croissante.

Et si $v_n \leq v_{n+1}$ alors $f(v_n) \geq f(v_{n+1})$ ie $w_n \geq w_{n+1}$ donc dans le second cas, (w_n) sera décroissante.

Ainsi, dans tous les cas, (w_n) est monotone de sens de monotonie contraire à celui de (v_n) .

6c On appelle l une éventuelle limite réelle de la suite (u_{2n}) . Montrer que $l \in \{\alpha, \beta, \beta'\}$. On suppose $\lim_{n \to +\infty} v_n = l$. Alors $\lim_{n \to +\infty} v_{n+1} = l$ et $\lim_{n \to +\infty} (f \circ f) (v_n) = (f \circ f) (l)$.car $f \circ f$ est continue en l. Donc par unicité de la limite $(f \circ f)(l) = l$ ie h(l) = 0. Donc $l \in \{\alpha, \beta, \beta'\}$.

6d Si l' est une éventuelle limite réelle de la suite (u_{2n+1}) , quelles sont les valeurs possibles de l'?

Idem on obtient $l' \in \{\alpha, \beta, \beta'\}$.

On étudie désormais la convergence de la suite (u_n) selon quelques cas particuliers de valeurs de u_0 .

- 7 On suppose que $u_0 = \alpha$. Quelle est la particularité de la suite (u_n) dans ce cas ? Est-elle convergente ? Puisque $f(\alpha) = \alpha$, la suite est constante égale à α donc convergente de limite α .
- 8 On suppose que $u_0 \in \{\beta, \beta'\}$. Quelle est la particularité des suites extraites (u_{2n}) et (u_{2n+1}) ? Que peut-on en déduire pour la convergence de la suite (u_n) ? Puisque $f(\beta) = \beta'$ et $f(\beta') = \beta$, on a pour tout $n, u_{2n} = \beta$ et $u_{2n+1} = \beta'$ donc ces suites sont

constantes et convergentes vers β et β' qui sont différents donc (u_n) n'est pas convergente.

- **9** Dans cette question, on suppose que $u_0 \in [0, \beta[$.
- **9a** Montrer que la suite (u_{2n}) est à valeurs dans $[0, \beta]$. $f \circ f$ est croissante sur \mathbb{R}^+ et $(f \circ f)(\beta) = \beta$ donc on montre par récurrence (vous devez la rédiger) que $u_{2n} \in [0, \beta]$.
- **9b** Montrer que la suite (u_{2n+1}) est à valeurs dans $[\beta', 3]$.

Puisque $u_1 = f(u_0) = \frac{3}{1 + u_0^2} \le 3$ et $u_0 \le \beta$ donc $f(u_0) \ge f(\beta)$ ie $u_1 \ge \beta'$.

Ainsi $u_1 \in [\beta', 3]$. On montre alors par récurrence que $u_{2n+1} \in [\beta', 3]$ ou mieux ; on a pour tout entier $n, 0 \le u_{2n} \le \beta$ donc, f étant décroissante, $f(\beta) = \beta' \le u_{2n+1} \le f(0) = 3$.

9c En utilisant les variations des suites (u_{2n}) et (u_{2n+1}) , montrer qu'elles sont convergentes et déterminer leur limite respective.

 (u_{2n}) est monotone et bornée et (u_{2n+1}) est monotone et bornée donc elles sont convergentes d'après le théorème de la limite monotone. Leurs limites étant respectivement dans $[0, \beta]$ et $[\beta', 3]$ et ne pouvant être égales qu'à β, α ou β' et puisque $\beta < \alpha < \beta'$, on a $\lim_{n \to +\infty} u_{2n} = \beta$ et $\lim_{n \to +\infty} u_{2n+1} = \beta'$.

9d La suite (u_n) est-elle convergente?

Ces deux limites étnat différentes, la suite (u_n) n'est pas convergente.

- Corrigé de l'exercice 2: injections, surjections, bijections. Soit E un ensemble. Les deux questions sont indépendantes.
- **1** On note Id_E l'application identité de E dans E ($\forall x \in E, Id_E(x) = x$). Soit f de E dans E telle que $f \circ f \circ f = Id_E$. Montrer que f est bijective.

Soient $x, x' \in E$ tels que f(x) = f(x'). Alors en composant par $f \circ f$, on a $(f \circ f \circ f)(x) = (f \circ f \circ f)(x')$ donc puisque $f \circ f \circ f = Id_E$, on a x = x'.

Donc f est injective.

Soit $y \in E$. Alors $y = (f \circ f \circ f)(y) = f((f \circ f)(y))$ donc y admet un antécédent par f.

Donc f est surjective.

Donc f est bijective.

2 Soient A et B deux parties de E. On note respectivement P(E), P(A) et P(B) les ensembles des parties de E, A et B.

Soit Φ l'application :

$$\Phi: \begin{array}{c} \mathcal{P}(E) \to \mathcal{P}(A) \times \mathcal{P}(B) \\ X \mapsto (X \cap A, X \cap B) \end{array}$$

2a Monter que Φ est injective si et seulement si $A \cup B = E$. (on procédera par double implication).

(⇐) On suppose $A \cup B = E$. Soient $X, X' \in \mathcal{P}(E)$ tels que $\Phi(X) = \Phi(X')$. Alors $(X \cap A, X \cap B) = (X' \cap A, X' \cap B)$.

Soit $x \in X$, alors $x \in E = A \cup B$ donc $x \in A$ ou $x \in B$. Donc $x \in X \cap A$ ou $x \in X \cap B$. Donc $x \in X' \cap A$ ou $x \in X' \cap B$. Donc $x \in X'$.

Donc $X \subset X'$. L'inclusion inverse $X' \subset X$ se prouve de manière identique. Donc X = X'. Donc Φ est injective.

(⇒) On raisonne par contraposée en supposant $A \cup B \neq E$. Comme A et B sont des parties de E, cela signifie qu'il existe $x \in E$ tel que $x \notin A$ et $x \notin B$.

Il est alors clair que $\Phi(\{x\}) = (\emptyset, \emptyset) = \Phi(\emptyset)$ alors que $\{x\} \neq \emptyset$. Donc Φ n'est pas injective. Par contraposée, si Φ est injective, alors $A \cup B = E$.

L'équivalence est donc prouvée.

- **2b** Montrons que Φ est surjective si et seulement si $A \cap B = \emptyset$.
 - (\Leftarrow) Supposons $A \cap B = \emptyset$. Soit $(Y, Z) \in \mathcal{P}(A) \times \mathcal{P}(B)$. Posons $X = Y \cup Z$. On a alors:

$$X \cap A = (Y \cup Z) \cap A = (Y \cap A) \cup (Z \cap A) = Y$$

 $\operatorname{car} Y \subset A \text{ et } Z \subset B \text{ donc } Z \cap A = \emptyset.$

De même, $X \cap B = Z$. Donc :

$$\Phi(X) = (X \cap A, X \cap B) = (Y, Z)$$

Donc Φ est surjective.

(\Rightarrow) Par contraposée, supposons $A \cap B \neq \emptyset$. On peut alors prendre $x \in A \cap B$. Montrons que ($\{x\}, \emptyset$) n' pas d'antécédent par Φ . En effet, si $\Phi(X) = (\{x\}, \emptyset)$, alors $x \in X \cap A$ mais aussi $x \in B$ donc $x \in X \cap B = \emptyset$, ce qui est absurde. Donc Φ n'est pas surjective.

Par contraposée, si Φ est surjective, alors $A \cap B = \emptyset$.

Problème: moyenne arithmético-géométrique.

Préliminaire : Soit $f:]0, +\infty[\to \mathbb{R}$ une fonction croissante telle que la fonction $g:]0, +\infty[\to \mathbb{R}$ définie par $g(x) = \frac{f(x)}{x}$ est décroissante.

1a Soit $x_0 \in]0, +\infty[$. Montrer que f est continue à droite en $x_0 : \lim_{x \to x_0^+} f(x) = f(x_0)$.

Soit $x > x_0$, on a alors $f(x) \ge f(x_0)$ et $g(x) = \frac{f(x)}{x} \le g(x_0) = \frac{f(x_0)}{x_0}$ donc:

$$f\left(x_0\right) \le f\left(x\right) \le \frac{x}{x_0} f\left(x_0\right)$$

Or $\lim_{x \to x_0^+} \frac{x}{x_0} f(x_0) = f(x_0) = \lim_{x \to x_0^+} f(x_0)$ donc par encadrement, $\lim_{x \to x_0^+} f(x) = f(x_0)$ donc f est continue à droite en 0.

1b Montrer que f est continue sur $]0, +\infty[$.

Soit $x < x_0$, on a alors $f(x) \le f(x_0)$ et $g(x) = \frac{f(x)}{x} \ge g(x_0) = \frac{f(x_0)}{x_0}$ donc:

$$\frac{x}{x_0}f(x_0) \le f(x) \le f(x_0)$$

Or $\lim_{x\to x_0^-} \frac{x}{x_0} f(x_0) = f(x_0) = \lim_{x\to x_0^-} f(x_0)$ donc par encadrement, $\lim_{x\to x_0^-} f(x) = f(x_0)$ donc f est continue à gauche en 0.

Donc f étant continue à droite et à gauche en x_0 , est continue en x_0 .

Partie 1 : Soient a, b deux réels positifs. On considère les suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ définies par :

$$u_0 = a, \ v_0 = b \text{ et } \forall n \in \mathbb{N}, \ \begin{cases} u_{n+1} = \sqrt{u_n v_n} \\ v_{n+1} = \frac{u_n + v_n}{2} \end{cases}.$$

2 On se propose de montrer que (u_n) et (v_n) convergent vers une même limite.

2a Montrer que pour tout $n \in \mathbb{N}^*$, $0 \le u_n \le v_n$.

On montre facilement par récurrence sur $n \in \mathbb{N}^*$ que conjointement, $u_n \geq 0$ et $v_n \geq 0$. (A rédiger!)

Ensuite, on a pour $n \ge 1$:

$$v_n - u_n = \frac{u_{n-1} + v_{n-1}}{2} - \sqrt{u_{n-1}v_{n-1}} = \frac{1}{2} \left(\sqrt{v_{n-1}} - \sqrt{u_{n-1}} \right)^2 \ge 0$$

donc $0 \le u_n \le v_n$.

2b Montrer que (u_n) et (v_n) sont monotones à partir de $n \ge 1$ et de sens de monotonie contraires. Pour $n \ge 1$:

$$v_{n+1} - v_n = \frac{u_n - v_n}{2} \le 0$$

 $u_{n+1} - u_n = \sqrt{u_n v_n} - u_n = \sqrt{u_n} (\sqrt{v_n} - \sqrt{u_n}) \ge 0$

donc (u_n) est croissante et (v_n) décroissante à partir du rang 1.

2c Montrer que $\forall n \in \mathbb{N}^*, 0 \leq v_n - u_n \leq \frac{v_1 - u_1}{2^{n-1}}$.

Remarquons que puisque (u_n) est croissante, on a pour tout $n \in \mathbb{N}$:

$$v_{n+1} - u_{n+1} = \frac{u_n + v_n}{2} - u_{n+1} \le \frac{u_n + v_n}{2} - u_n = \frac{v_n - u_n}{2}.$$

On peut alors conclure en rédigeant une récurrence ou pour $n \ge 1$ par :

$$v_n - u_n \le \frac{v_{n-1} - u_{n-1}}{2} \le \frac{v_{n-2} - u_{n-2}}{2^2} \le \dots \le \frac{v_1 - u_1}{2^{n-1}}$$

donc
$$0 \le v_n - u_n \le \frac{v_1 - u_1}{2^{n-1}}$$
.

2d Conclure.

On a $\lim_{n\to+\infty^-} \frac{v_1-u_1}{2^{n-1}} = 0 = \lim_{n\to+\infty^-} 0$ donc par encadrement, $\lim_{n\to+\infty} (v_n-u_n) = 0$ donc les suites (u_n) et (v_n) sont adjacentes. Donc elles admettent une limite commune.

La limite commune à ces deux suites est appelée moyenne arithmético-géométrique de a et b. Elle sera notée $M\left(a,b\right)$.

2e Déterminer M(a, a) et M(0, b) pour $a, b \in \mathbb{R}^+$.

Dans la suite du problème, on notera $(u_n(a,b))_{n\in\mathbb{N}}$ les deux suites précédemment définies. Cette notation permet de comparer ces suites définies relativement à des valeurs initiales (a et b) différentes. Lorsque a=b, on a pour tout n, $u_n(a,a)=v_n(a,a)=a$ donc M(a,a)=a.

Lorsque a = 0, on a facilement par récurrence, pour tout n, $u_n(0, b) = 0$ donc $\lim_{n \to +\infty^-} u_n(0, b) = 0$ donc M(0, b) = 0.

3 On se propose d'établir quelques prorpiétés utiles de la fonction $(a,b) \longmapsto M(a,b)$.

3a Montrer que pour tous $a, b \in \mathbb{R}^+ : M(a, b) = M(b, a)$.

Il est clair pour n=1 et donc immédiatement pour tout $n\geq 1$ que $u_n\left(a,b\right)=u_n\left(b,a\right)$ et $v_n\left(a,b\right)=v_n\left(b,a\right)$ donc $M\left(a,b\right)=M\left(b,a\right)$.

3b Montrer que pour tous $a, b \in \mathbb{R}^+$: $\forall \lambda \in \mathbb{R}^+$, $M(\lambda a, \lambda b) = \lambda M(a, b)$.

On vérifie facilement par récurrence sur $n \in \mathbb{N}$, que $u_n(\lambda a, \lambda b) = \lambda u_n(a, b)$ et $v_n(\lambda a, \lambda b) = \lambda v_n(a, b)$ (on utilise $\lambda \geq 0$ pour cela). Or $\lim_{n \to +\infty^-} u_n(\lambda a, \lambda b) = M(\lambda a, \lambda b)$ et $\lim_{n \to +\infty^-} \lambda u_n(a, b) = \lambda M(a, b)$ donc par unicité de la limite, $M(\lambda a, \lambda b) = \lambda M(a, b)$.

3c Montrer que pour tous $a, b \in \mathbb{R}^+ : M(a, b) = M\left(\sqrt{ab}, \frac{a+b}{2}\right)$.

Il est clair (et cela se vérifie encore par récurrence) que $u_{n+1}(a,b) = u_n\left(\sqrt{ab}, \frac{a+b}{2}\right)$ et

$$v_{n+1}(a,b) = v_n\left(\sqrt{ab}, \frac{a+b}{2}\right).$$

 $\operatorname{Or} \lim_{n \to +\infty^{-}} u_{n+1}(a,b) = \lim_{n \to +\infty^{-}} u_{n}(a,b) = M(a,b) \operatorname{et} \lim_{n \to +\infty^{-}} u_{n}\left(\sqrt{ab}, \frac{a+b}{2}\right) = M\left(\sqrt{ab}, \frac{a+b}{2}\right)$

donc par unicité de la limite, $M\left(a,b\right)=M\left(\sqrt{ab},\frac{a+b}{2}\right)$.

3d Montrer que pour tous $a, b \in \mathbb{R}^+ : \sqrt{ab} \le M(a, b) \le \frac{a+b}{2}$.

La suite $(u_n(a,b))$ est croissante et la suite $(v_n(a,b))$ est décroissante et elles sont adjacentes donc :

$$u_1(a,b) \leq M(a,b) \leq v_1(a,b)$$

i.e.

$$\sqrt{ab} \le M(a,b) \le \frac{a+b}{2}.$$

Partie 2: On considère ici la fonction φ définie sur \mathbb{R}^+ par $\varphi(x) = M(1, x)$.

4 Donner $\varphi(0)$ et $\varphi(1)$.

On a d'après 2e et 3a :

$$\varphi(0) = M(1,0) = M(0,1) = 0$$

 $\varphi(1) = M(1,1) = 1$

5 On désire prouver que la fonction φ est croissante sur \mathbb{R}^+ . Pour cela on considère $0 \le x < y$ deux réels.

5a Montrer que $\forall n \in \mathbb{N}, u_n(1, x) \leq u_n(1, y)$ et $v_n(1, x) \leq v_n(1, y)$.

Montrons par récurrence sur $n \in \mathbb{N}$ que $u_n(1,x) \leq u_n(1,y)$ et $v_n(1,x) \leq v_n(1,y)$:

- I.: n = 0, $u_0(1, x) = 1 \le u_0(1, y) = 1$ et $v_0(1, x) = x \le v_0(1, y) = 0$. OK!
- H.: Soit $n \in \mathbb{N}$ tel que $u_n(1,x) \le u_n(1,y)$ et $v_n(1,x) \le v_n(1,y)$. Alors tout est positif donc $0 \le u_n(1,x) v_n(1,x) \le u_n(1,y) v_n(1,y)$

$$u_{n+1}(1,x) = \sqrt{u_n(1,x)v_n(1,x)} \le \sqrt{u_n(1,y)v_n(1,y)} = u_{n+1}(1,y)$$

et
$$\frac{u_n(1,x) + v_n(1,x)}{2} \le \frac{u_n(1,y) + v_n(1,y)}{2}$$
 donc $v_{n+1}(1,x) \le v_{n+1}(1,y)$.

- Conclusion: pour tout $n \in \mathbb{N}$, $u_n(1,x) \le u_n(1,y)$ et $v_n(1,x) \le v_n(1,y)$.
- **5b** Conclure.

Or $\lim_{n\to+\infty^{-}} u_n(1,x) = \varphi(x)$ et $\lim_{n\to+\infty^{-}} u_n(1,y) = \varphi(y)$ donc par passage à la limite quand $n\to+\infty$: $\varphi(x)\leq\varphi(y)$.

Donc φ est croissante sur \mathbb{R} .

6 On étudie ici la continuité de φ sur \mathbb{R}^+ .

6a Montrer que $\forall x > 0, \ \varphi(x) = x\varphi\left(\frac{1}{x}\right)$.

Pour tout x > 0, on a en utilisant 3b et 3a :

$$\varphi(x) = M(1, x) = xM\left(\frac{1}{x}, 1\right) = xM\left(1, \frac{1}{x}\right) = x\varphi\left(\frac{1}{x}\right)$$

6b En exploitant le préliminaire, montrer que φ est continue sur $]0,+\infty[$.

Posons $g(x) = \frac{\varphi(x)}{x}$, alors $g(x) = \varphi\left(\frac{1}{x}\right)$ est décroissante sur $]0, +\infty[$ car si 0 < x < y, alors

 $0 < \frac{1}{y} < \frac{1}{x} \text{ donc } \varphi\left(\frac{1}{y}\right) \le \varphi\left(\frac{1}{x}\right) \text{ donc } g\left(y\right) \le g\left(x\right) \text{ donc } \varphi \text{ est croissante sur }]0, +\infty[\text{ et } g \text{ est décroissante sur }]0, +\infty[\text{ . Donc d'après_le préliminaire, } \varphi \text{ est continue sur }]0, +\infty[\text{ . }$

6c Montrer que
$$\forall x \geq 0, \ \varphi(x) = \frac{1+x}{2} \varphi\left(\frac{2\sqrt{x}}{1+x}\right)$$
.

On a pour
$$x \ge 0$$
: $\varphi(x) = M(1, x) = M\left(\sqrt{x}, \frac{1+x}{2}\right)$ (3c) donc (3b et 3a):

$$\varphi\left(x\right) = \frac{1+x}{2}M\left(\frac{2\sqrt{x}}{1+x},1\right) = \frac{1+x}{2}M\left(1,\frac{2\sqrt{x}}{1+x}\right) = \frac{1+x}{2}\varphi\left(\frac{2\sqrt{x}}{1+x}\right).$$

6d En déduire que φ est continue à droite en 0 : $\lim_{x\to 0^{+}} \varphi\left(x\right) = \varphi\left(0\right)$.

 φ est croissante sur \mathbb{R}^+ et positive donc minorée par 0 donc d'après le théorème de la limite monotone, φ admet en 0^+ une limite finie $l \geq 0$.

On a aussi
$$\lim_{x\to 0^-} \frac{2\sqrt{x}}{1+x} = 0^+$$
 donc $\lim_{x\to 0^-} \varphi\left(\frac{2\sqrt{x}}{1+x}\right) = l$ donc $\lim_{x\to 0^-} \frac{1+x}{2}\varphi\left(\frac{2\sqrt{x}}{1+x}\right) = \frac{l}{2}$ donc per pessego à la limite dons for on obtient $l = \frac{l}{2}$ donc $l = 0$ i.e., $\lim_{x\to 0^-} \varphi(x) = 0 = M(1,0) = 0$

par passage à la limite dans 6c, on obtient $l = \frac{l}{2}$ donc l = 0 i.e., $\lim_{x \to 0^+} \varphi(x) = 0 = M(1, 0) = \varphi(0)$ donc φ est continue à droite en 0.

7 On étudie ici le comportement de φ en $+\infty$.

7a Montrer que
$$\forall x \in \mathbb{R}^+, \sqrt{x} \le \varphi(x) \le \frac{1+x}{2}$$
.

On a d'après 3d,
$$\sqrt{x} \le M(1, x) \le \frac{1+x}{2} \operatorname{donc}\sqrt{x} \le \varphi(x) \le \frac{1+x}{2}$$
.

7b Etudier la limite de φ en $+\infty$.

Comme
$$\lim_{x\to +\infty} \sqrt{x} = +\infty$$
, par théorème de comparaison, il vient $\lim_{x\to +\infty} \varphi(x) = +\infty$.

8 Représenter sur un même graphe les allures des fonctions
$$x \longmapsto \sqrt{x}, x \longmapsto \varphi(x)$$
 et $x \longmapsto \frac{1+x}{2}$.

9 En exploitant l'encadrement de 7a, étudier la dérivabilité de φ en 0 à droite et en 1, c'est-à dire étudier si les limites suivantes :

$$\lim_{x \to 0^{+}} \frac{\varphi(x) - \varphi(0)}{x - 0} \text{ et } \lim_{x \to 1} \frac{\varphi(x) - \varphi(1)}{x - 1}.$$

existent et sont finies.

• En 0^+ : $\frac{\varphi(x) - \varphi(0)}{x - 0} = \frac{\varphi(x)}{x}$ donc $\frac{1}{\sqrt{x}} \le \frac{\varphi(x)}{x}$ donc par théorème de comparaison, $\lim_{x \to 0^+} \frac{\varphi(x) - \varphi(0)}{x - 0} = +\infty$ donc φ n'est pas dérivable à droite en 0.

• En 1:
$$\frac{\varphi(x) - \varphi(1)}{x - 1} = \frac{\varphi(x) - 1}{x - 1}$$
 donc $\frac{\sqrt{x} - 1}{x - 1} \le \frac{\varphi(x) - 1}{x - 1} \le \frac{\frac{1 + x}{2} - 1}{x - 1}$ donc $\frac{\varphi(x) - 1}{x - 1} \le \frac{\varphi(x) - 1}{x - 1} \le \frac{1 + x}{x - 1}$

$$\frac{1}{\sqrt{x}+1} \le \frac{\varphi(x)-1}{x-1} \le \frac{x-1}{2(x-1)} = \frac{1}{2}$$

donc puisque $\lim_{x\to 1} \frac{1}{\sqrt{x}+1} = \frac{1}{2} = \lim_{x\to 1} \frac{1}{2}$ par encadrement, on a $\lim_{x\to 1} \frac{\varphi\left(x\right)-1}{x-1} = \frac{1}{2}$ donc φ est dérivable en 1 et $\varphi'\left(1\right) = \frac{1}{2}$.