D.S.7 (2h30) 29 Mars 2025

Exercice : CET EXO PEUT ETRE ALLONGÉ en considérant $\theta(f) = x \mapsto x(f'(x) - f(x))$, c'est un endomorphisme de E, et on pourrait l'étudier !! Et résoudre une equa diff

On note $\mathcal{F}(\mathbb{R}^*,\mathbb{R})$ l'espace vectoriel des fonctions à valeurs réelles, définies sur \mathbb{R}^* et on définit :

$$E = \left\{ f \in \mathcal{F}\left(\mathbb{R}^*, \mathbb{R}\right) / \exists a, b, c \in \mathbb{R} / \forall x \in \mathbb{R}^*, \ f\left(x\right) = \frac{ae^x}{x} + be^x + cxe^x \right\}$$

- **1** Montrer que E est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R}^*,\mathbb{R})$, de dimension finie en précisant une famille génératrice (f_1,\ldots,f_p) de E (on précisera la valeur de p).
- **2** Montrer que (f_1, \ldots, f_p) est libre. Il en résulte que $\mathcal{B} = (f_1, \ldots, f_p)$ est une base de E.
- 3 Justifier qu'il existe un unique endomorphisme Φ de E tel que :

$$\Phi(f_1) = f_1 - 4f_2 + 8f_3
\Phi(f_2) = 4f_1 - 9f_2 + 16f_3
\Phi(f_3) = 2f_1 - 4f_2 + 7f_3$$

puis donner la matrice A de Φ dans la base \mathcal{B} .

- 4 Montrer que Φ est une symétrie.
- 5 Déterminer une base des sous-espaces vectoriels F et G de E tels que Φ est la symétrie par rapport à F parallèlement à G.
- 6 Déterminer une base \mathcal{B}' de E dans-laquelle la matrice de Φ est diagonale. On notera D cette matrice.
- 7 Déterminer la matrice P de passage de \mathcal{B} à \mathcal{B}' , ainsi que son inverse P^{-1} .
- 8 En déduire comment calculer A^n pour tout entier naturel n. On pourra n'effectuer les calculs de manière explicite que jusqu'à l'obtention de la première colonne de A^n .
- Problème 1 : Coeur et nilespace d'un endomorphisme Dans tout ce problème, k désigne indifféremment \mathbb{R} ou \mathbb{C} .

Si E est un espace vectoriel , on note $\mathcal{L}\left(E\right)$ l'ensemble des endomorphismes de E.

Si u est un endomorphisme de E, alors pour tout $n \in \mathbb{N}$, la notation u^n désigne l'endomorphisme de E défini par récurrence par $u^0 = Id_E$ et $u^{n+1} = u^n \circ u = u \circ u^n$.

- Partie 1 : résultats préliminaires : On se donne E un espace vectoriel sur k et u un endomorphisme de E.
- **1a** Montrer que pour tout $k \in \mathbb{N}$: $\ker (u^k) \subset \ker (u^{k+1})$.
- **1b** Montrer que pour tout $k \in \mathbb{N} : \operatorname{Im} (u^{k+1}) \subset \operatorname{Im} (u^k)$.

- 2 On suppose dans cette question seulement que E est de dimension finie. Montrer qu'il y a équivalence entre les trois propriétés suivantes :
- $(i): E = \ker(u) \oplus \operatorname{Im}(u)$
- (ii): $\operatorname{Im}(u) = \operatorname{Im}(u^2)$
- (iii): $\ker(u) = \ker(u^2)$ Indication: on prouvera $(i \Rightarrow ii)$, $(ii \Rightarrow iii)$ et $(iii \Rightarrow i)$.
- 3 E n'est plus supposé de dimension finie.
- **3a** Montrer que $E = \ker(u) + \operatorname{Im}(u) \Leftrightarrow \operatorname{Im}(u) = \operatorname{Im}(u^2)$.
- **3b** Montrer que $\ker(u) \cap \operatorname{Im}(u) = \{\vec{0}\} \Leftrightarrow \ker(u) = \ker(u^2)$.
- **3c** Montrer que $E = \ker(u) \oplus \operatorname{Im}(u) \Leftrightarrow (\operatorname{Im}(u) = \operatorname{Im}(u^2) \text{ et } \ker(u) = \ker(u^2))$.

Partie 2 : un exemple : Dans cette question, $E=\mathbb{R}^3$ et u est l'application définie par :

$$u: (x, y, z) \mapsto u(x, y, z) = (4x - y + 5z, -2x - y - z, -4x + y - 5z)$$

- **4a** Justifier que u est un endomorphisme de \mathbb{R}^3 .
- **4b** Déterminer une base de $\ker(u)$ et une base de $\operatorname{Im}(u)$.
- **4c** En déduire que la propriété $\mathbb{R}^3 = \ker(u) \oplus \operatorname{Im}(u)$ est fausse.
- **5a** Déterminer une base de $\ker(u^2)$ et une base de $\operatorname{Im}(u^2)$.
- **5b** Montrer que $\mathbb{R}^3 = \ker(u^2) \oplus \operatorname{Im}(u^2)$.

Partie 3 : Cas général : Dans cette parite, E est un k-espace vectoriel et u un endomorphisme de E.

Attention, dans cette partie, E n'est pas supposé de dimension finie.

On appelle coeur de l'endomorphisme u, noté C, la partie de E définie par : pour tout $\vec{x} \in E$:

$$\vec{x} \in C \Leftrightarrow \forall k \in \mathbb{N}, \ \vec{x} \in \operatorname{Im}\left(u^{k}\right)$$

On appelle nilespace de l'endomorphisme u, noté N, la partie de E définie par : pour tout $\vec{x} \in E$:

$$\vec{x} \in N \Leftrightarrow \exists k \in \mathbb{N} \text{ tel que } \vec{x} \in \ker (u^k)$$

Enfin, on dit qu'un sous-espace vectoriel F de E est stable par u si et seulement si $\forall \vec{x} \in F$, $u(\vec{x}) \in F$.

6 Soient n, k deux entiers naturels. Montrer que ker (u^k) et $\operatorname{Im}(u^k)$ sont stables par u^n .

7 On rappelle que d'après la partie 1 :

$$\forall k \in \mathbb{N} : \ker (u^k) \subset \ker (u^{k+1}) \text{ et } \operatorname{Im} (u^{k+1}) \subset \operatorname{Im} (u^k).$$

7a Montrer que C et N sont des sous-espaces vectoriels de E.

7b Montrer que C et N sont stables par u.

7c Montrer que u surjectif $\Leftrightarrow C = E$.

7d Montrer que u injectif $\Leftrightarrow N = \{\vec{0}\}$.

8 On suppose dans les questions 8a et 8b qu'il existe un rang $k \in \mathbb{N}^*$ tel que $\operatorname{Im}(u^k) = \operatorname{Im}(u^{k+1})$.

8a Vérifier que pour tout $n \in \mathbb{N}$: Im $(u^{k+n}) = \text{Im}(u^k)$.

8b On note r le plus petit entier k non nul tel que $\operatorname{Im}(u^k) = \operatorname{Im}(u^{k+1})$. Montrer que :

8bi : $C = \text{Im}(u^r)$

8bii u(C) = C

8biii $E = \ker(u^r) + \operatorname{Im}(u^r)$ (utiliser la partie 1).

9 On suppose dans les questions 9a et 9b qu'il existe un rang $k \in \mathbb{N}^*$ tel que $\ker(u^k) = \ker(u^{k+1})$.

9a Vérifier que pour tout $n \in \mathbb{N}$: $\ker (u^{k+n}) = \ker (u^k)$.

9b On note s le plus petit entier k non nul tel que ker $(u^k) = \ker(u^{k+1})$. Montrer que :

9bi $N = \ker(u^s)$.

9bii $\ker(u^s) \cap \operatorname{Im}(u^s) = \{\vec{0}\}\ (\text{utiliser la partie 1}).$

Exercice : On note $\mathcal{F}(\mathbb{R}^*, \mathbb{R})$ l'espace vectoriel des fonctions à valeurs réelles, définies sur \mathbb{R}^* et on définit :

$$E = \left\{ f \in \mathcal{F}\left(\mathbb{R}^*, \mathbb{R}\right) / \exists a, b, c \in \mathbb{R} / \forall x \in \mathbb{R}^*, \ f\left(x\right) = \frac{ae^x}{x} + be^x + cxe^x \right\}$$

1 Montrer que E est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R}^*,\mathbb{R})$, de dimension finie en précisant une famille génératrice (f_1,\ldots,f_p) de E (on précisera la valeur de p).

Notons f_1, f_2, f_3 les fonctions de E définies par :

$$\forall x \in \mathbb{R}^*, f_1(x) = \frac{e^x}{x}$$

$$\forall x \in \mathbb{R}^*, f_2(x) = e^x$$

$$\forall x \in \mathbb{R}^*, f_3(x) = xe^x$$

Alors $f \in E \Leftrightarrow \exists a, b, c \in \mathbb{R} / f = af_1 + bf_2 + cf_3 \Leftrightarrow f \in Vect(f_1, f_2, f_3)$.

Donc $E = Vect(f_1, f_2, f_3)$. Donc E est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R}^*, \mathbb{R})$ et (f_1, f_2, f_3) est une famille génératrice de E, qui est donc de dimension finie (et dim $(E) \leq 3$).

2 Montrer que (f_1, \ldots, f_p) est libre.

Il en résulte que $\mathcal{B} = (f_1, \dots, f_p)$ est une base de E.

Soient $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ tels que $\lambda_1 f_1 + \lambda_2 f_2 + \lambda_3 f_3 = 0$. Alors pour tout $x \in \mathbb{R}^*$:

$$\lambda_1 \frac{e^x}{x} + \lambda_2 e^x + \lambda_3 x e^x = 0$$

Si $\lambda_1 \neq 0$, la limite quand x tend vers 0^+ donne $+\infty = 0$, ce qui est absurde. Donc $\lambda_1 = 0$. Donc pour tout $x \in \mathbb{R}^*$:

$$\lambda_2 e^x + \lambda_3 x e^x = 0$$

La limite quand x tend vers 0 donne alors $\lambda_2 = 0$. Donc pour tout $x \neq 0$, $\lambda_3 x e^x = 0$. Prendre x = 1 donne alors $\lambda_3 = 0$.

Donc $\lambda_1 = \lambda_2 = \lambda_3 = 0$ donc (f_1, f_2, f_3) est libre.

3 Justifier qu'il existe un unique endomorphisme Φ de E tel que :

$$\Phi(f_1) = f_1 - 4f_2 + 8f_3
\Phi(f_2) = 4f_1 - 9f_2 + 16f_3
\Phi(f_3) = 2f_1 - 4f_2 + 7f_3$$

puis donner la matrice A de Φ dans la base \mathcal{B} .

Une application linéaire de E dans E est entièrement déterminée par l'image d'ailleurs arbitraire (dans E quand même!!) des éléments d'une base de E. Or $\mathcal{B} = (f_1, f_2, f_3)$ est une base de E et $f_1 - 4f_2 + 8f_3, 4f_1 - 9f_2 + 16f_3, 2f_1 - 4f_2 + 7f_3 \in E$ donc il existe bien un unique endomorphisme Φ de E déterminé par les images $\Phi(f_1)$, $\Phi(f_2)$ et $\Phi(f_3)$ demandées.

Etant donné la définition de la matrice d'un endomorphisme dans une base, on a immédiatement :

$$A = \left(\begin{array}{rrr} 1 & 4 & 2 \\ -4 & -9 & -4 \\ 8 & 16 & 7 \end{array}\right)$$

4 Montrer que Φ est une symétrie.

On calcule A^2 :

$$A^{2} = \begin{pmatrix} 1 & 4 & 2 \\ -4 & -9 & -4 \\ 8 & 16 & 7 \end{pmatrix} \begin{pmatrix} 1 & 4 & 2 \\ -4 & -9 & -4 \\ 8 & 16 & 7 \end{pmatrix} = \begin{pmatrix} 1 - 16 + 16 & \cdots & \cdots \\ \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

il est bienvenu de détailler un peu plus le calcul en remplissant les · · ·

 Φ est donc linéaire et vérifie $\Phi \circ \Phi = Id_E$ donc Φ est une symétrie.

5 Déterminer une base des sous-espaces vectoriels F et G de E tels que Φ est la symétrie par rapport à F parallèlement à G.

On a $F = \ker (\Phi - Id_E)$ et $G = \ker (\Phi + Id_E)$.

Or pour $f \in E$, $f = af_1 + bf_2 + cf_3$, on a:

$$f \in F \Leftrightarrow (A - I_3) \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 0 & 4 & 2 \\ -4 & -10 & -4 \\ 8 & 16 & 6 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} 4b + 2c = 0 \\ -4a - 10b - 4c = 0 \\ 8a + 16b + 6c = 0 \end{cases} \Leftrightarrow \begin{cases} 4b + 2c = 0 \\ -4a - 10b - 4c = 0 \\ -4b - 2c = 0 \end{cases} \Rightarrow \begin{cases} 4b + 2c = 0 \\ -4a - 10b - 4c = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} c = -2b \\ -4a - 10b + 8b = 0 \end{cases} \Leftrightarrow \begin{cases} c = -2b \\ a = -\frac{1}{2}b \end{cases} \Leftrightarrow f = -\frac{1}{2}bf_1 + bf_2 - 2bf_3 = b\left(-\frac{1}{2}f_1 + f_2 - 2f_3\right)$$

$$\Leftrightarrow f \in Vect\left(-\frac{1}{2}f_1 + f_2 - 2f_3\right)$$

Donc $F = Vect(g_1)$, où l'on pose $g_1 = -\frac{1}{2}f_1 + f_2 - 2f_3$.

F est une droite vectorielle de base (g_1) (cette application est non nulle car $\left(\frac{-1}{2}, 1, -2\right) \neq (0, 0, 0)$).

D'autre part:

$$f \in G \Leftrightarrow (A+I_3) \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 2 & 4 & 2 \\ -4 & -8 & -4 \\ 8 & 16 & 8 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} 2a+4b+2c=0 \\ -4a-8b-4c=0 \\ 8a+16b+8c=0 \end{cases} \Leftrightarrow \begin{cases} 2a+4b+2c=0 \\ 0=0 \\ 0=0 \end{cases} \qquad L_2+2L_1 \Leftrightarrow a+2b+c=0$$

$$\Leftrightarrow a=-2b-c \Leftrightarrow f=(-2b-c)f_1+bf_2+cf_3 \Leftrightarrow f=b(-2f_1+f_2)+c(-f_1+f_3)$$

Donc $G = Vect(g_2, g_3)$, où l'on pose $g_2 = -2f_1 + f_2$ et $g_3 = -f_1 + f_3$. g_2 et g_3 sont non colinéaires car (-2, 1, 0) et (-1, 0, 1) ne le sont pas. Donc, étant libre et génératrice de G, (g_2, g_3) est une base de G.

$$\text{V\'erif. Maple}: \left(\begin{array}{ccc} 1 & 4 & 2 \\ -4 & -9 & -4 \\ 8 & 16 & 7 \end{array}\right), \text{ eigenvectors: } \left\{ \left(\begin{array}{c} \frac{1}{4} \\ -\frac{1}{2} \\ 1 \end{array}\right) \right\} \leftrightarrow 1, \left\{ \left(\begin{array}{c} -2 \\ 1 \\ 0 \end{array}\right), \left(\begin{array}{c} -1 \\ 0 \\ 1 \end{array}\right) \right\} \leftrightarrow -1.$$

- **6** Déterminer une base \mathcal{B}' de E dans-laquelle la matrice de Φ est diagonale. On notera D cette matrice. Φ est une symétrie de E donc $F \oplus G = E$ donc $\mathcal{B}' = (g_1, g_2, g_3)$ est une base de E comme réunion des bases de deux supplémentaires.
 - De plus, $\Phi(g_1) = g_1$, $\Phi(g_2) = -g_2$ et $\Phi(g_3) = -g_3$ donc la matrice D de Φ dans la base \mathcal{B}' est diagonale :

$$D = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array}\right)$$

7 Déterminer la matrice P de passage de \mathcal{B} à \mathcal{B}' , ainsi que son inverse P^{-1} .

On a $P = \mathcal{M}at_{\mathcal{B}}(\mathcal{B}') = \mathcal{M}at_{\mathcal{B}}(g_1, g_2, g_3)$ donc:

$$P = \left(\begin{array}{ccc} -\frac{1}{2} & -2 & -1\\ 1 & 1 & 0\\ -2 & 0 & 1 \end{array}\right)$$

La méthode standard de calcul de P^{-1} par résolution du système PX = Y (à détailler bien sûr!!) donne :

$$P^{-1} = \left(\begin{array}{rrr} -2 & -4 & -2\\ 2 & 5 & 2\\ -4 & -8 & -3 \end{array}\right)$$

8 En déduire comment calculer A^n pour tout entier naturel n. On pourra n'effectuer les calculs de manière explicite que jusqu'à l'obtention de la première colonne de A^n .

La formule de changement de base pour les endomorphismes donne : $D = P^{-1}AP$ donc $A = PDP^{-1}$.

Ensuite, une récurrence classique (à détailler d'une manière ou d'une autre) donne $A^n = PD^nP^{-1}$.

De manière évidente (pas besoin de récurrence cette fois!) :

$$D^{n} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & (-1)^{n} & 0 \\ 0 & 0 & (-1)^{n} \end{pmatrix}$$

Donc:

$$D^{n}P^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & (-1)^{n} & 0 \\ 0 & 0 & (-1)^{n} \end{pmatrix} \begin{pmatrix} -2 & -4 & -2 \\ 2 & 5 & 2 \\ -4 & -8 & -3 \end{pmatrix} = \begin{pmatrix} -2 & -4 & -2 \\ (-1)^{n}2 & (-1)^{n}5 & (-1)^{n}2 \\ -(-1)^{n}4 & -(-1)^{n}8 & -(-1)^{n}3 \end{pmatrix}$$

donc;

$$A^{n} = \begin{pmatrix} -\frac{1}{2} & -2 & -1 \\ 1 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix} \begin{pmatrix} -2 & -4 & -2 \\ (-1)^{n} 2 & (-1)^{n} 5 & (-1)^{n} 2 \\ -(-1)^{n} 4 & -(-1)^{n} 8 & -(-1)^{n} 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 - 2(-1)^{n} & (-1)^{n} & (-1)^{n$$

Remarque : sans surprise, on peut observer que $A^n = A$ si n est impair et $A^n = I_3$ si n est pair puisque $A^2 = I_3$.

Corrigé du problème 1 : Dans tout ce problème, k désigne indifféremment $\mathbb R$ ou $\mathbb C$.

Si E est un espace vectoriel, on note $\mathcal{L}(E)$ l'ensemble des endomorphismes de E.

Si u est un endomorphisme de E, alors pour tout $n \in \mathbb{N}$, la notation u^n désigne l'endomorphisme de E défini par récurrence par $u^0 = Id_E$ et $u^{n+1} = u^n \circ u = u \circ u^n$.

Partie 1 : résultats préliminaires : On se donne E un espace vectoriel sur \mathbb{k} et u un endomorphisme de E.

- **1a** Montrer que pour tout $k \in \mathbb{N}$: ker $(u^k) \subset \ker (u^{k+1})$. Vu en TD et en cours.
- **1b** Montrer que pour tout $k \in \mathbb{N} : \text{Im}(u^{k+1}) \subset \text{Im}(u^k)$. Idem.
- **2** On suppose dans cette question seulement que E est de dimension finie. Montrer qu'il y a équivalence entre les trois propriétés suivantes :
- $(i): E = \ker(u) \oplus \operatorname{Im}(u)$
- (ii): Im $(u) = \text{Im } (u^2)$
- (iii): $\ker(u) = \ker(u^2)$ Indication: on prouvera $(i \Rightarrow ii)$, $(ii \Rightarrow iii)$ et $(iii \Rightarrow i)$. $(i \Rightarrow ii)$ On suppose $E = \ker(u) \oplus \operatorname{Im}(u)$.

Soit $\vec{y} \in \text{Im}(u)$. Alors $\exists \vec{x} \in E$ tel que $\vec{y} = u(\vec{x})$. Et on peut décomposer $\vec{x} = \vec{x}_1 + \vec{x}_2$ avec $\vec{x}_1 \in \text{ker}(u)$ et $\vec{x}_2 \in \text{Im}(u)$. (peu importe l'unicité de cette décomposition). On a alors :

$$\vec{y} = u(\vec{x}_1 + \vec{x}_2) = u(\vec{x}_1) + u(\vec{x}_2) = u(\vec{x}_2)$$

Or $\exists \vec{x}_3 \in E$ tel que $\vec{x}_2 = u(\vec{x}_3)$ donc $\vec{y} = u^2(\vec{x}_3) \in \text{Im}(u^2)$.

Donc $\operatorname{Im}(u) \subset \operatorname{Im}(u^2)$ donc vu 1a, $\operatorname{Im}(u) = \operatorname{Im}(u^2)$.

 $(ii \Rightarrow iii)$ On suppose $\operatorname{Im}(u) = \operatorname{Im}(u^2)$. Donc $rg(u) = rg(u^2)$.

Or d'après la formule du rang, on a :

$$\dim(E) = rg(u) + \dim(\ker(u))$$

et dim(E) = $rg(u^2) + \dim(\ker(u^2))$

donc dim $(\ker(u)) = \dim(\ker(u^2))$. Sachant $\ker(u) \subset \ker(u^2)$, il vient $\ker(u) = \ker(u^2)$. $(iii \Rightarrow i)$ On suppose $\ker(u) = \ker(u^2)$.

Soit $\vec{y} \in \ker(u) \cap \operatorname{Im}(u)$. Alors $u(\vec{y}) = \vec{0}$ et $\exists \vec{x} \in E$ tel que $\vec{y} = u(\vec{x})$. On a $u^2(\vec{x}) = u(\vec{y}) = \vec{0}$ donc $\vec{x} \in \ker(u^2) = \ker(u)$ donc $\vec{y} = u(\vec{x}) = \vec{0}$. Donc $\ker(u) \cap \operatorname{Im}(u) = \{\vec{0}\}$.

Or d'après la formule du rang, $\dim(E) = \dim(\ker(u)) + \dim(\operatorname{Im}(u)) \operatorname{donc}$:

$$E = \ker(u) \oplus \operatorname{Im}(u).$$

- ${\bf 3}~E$ n'est plus supposé de dimension finie.
- **3a** Montrer que $E = \ker(u) + \operatorname{Im}(u) \Leftrightarrow \operatorname{Im}(u) = \operatorname{Im}(u^2)$.

La preuve de (\Rightarrow) est la même que ci-dessus, on n'utilisait pas que E était de dimension finie et pas non plus que la somme était directe.

Pour la réciproque, supposons $\operatorname{Im}(u) = \operatorname{Im}(u^2)$.

Soit $\vec{x} \in E$. $u(\vec{x}) \in \text{Im}(u) \text{ donc } u(\vec{x}) \in \text{Im}(u^2) \text{ donc } \exists \vec{x}' \in E \text{ tel que } u(\vec{x}) = u^2(\vec{x}')$.

Alors $u(\vec{x} - u(\vec{x}')) = \vec{0}$ donc $\vec{x} - u(\vec{x}') \in \ker(u)$.

Or $\vec{x} = \vec{x} - u(\vec{x}') + u(\vec{x}')$ donc $\vec{x} \in \ker(u) + \operatorname{Im}(u)$.

Donc $E \subset \ker(u) + \operatorname{Im}(u)$ donc $E = \ker(u) + \operatorname{Im}(u)$.

Ainsi, $E = \ker(u) + \operatorname{Im}(u) \Leftrightarrow \operatorname{Im}(u) = \operatorname{Im}(u^2)$.

- **3b** Montrer que $\ker(u) \cap \operatorname{Im}(u) = \{\vec{0}\} \Leftrightarrow \ker(u) = \ker(u^2)$.
 - (\Rightarrow) On suppose $\ker(u) \cap \operatorname{Im}(u) = \{\vec{0}\}.$

Soit $\vec{x} \in \ker(u^2)$. Alors $u(u(\vec{x})) = \vec{0}$ donc $u(\vec{x}) \in \ker(u)$ mais on a aussi $u(\vec{x}) \in \operatorname{Im}(u)$ et $\ker(u) \cap \operatorname{Im}(u) = \{\vec{0}\}$ donc $u(\vec{x}) = \vec{0}$ donc $\vec{x} \in \ker(u)$.

Donc $\ker(u^2) \subset \ker(u)$ et on a toujours l'inclusion inverse donc $\ker(u) = \ker(u^2)$.

 (\Leftarrow) On suppose $\ker(u) = \ker(u^2)$.

Soit $\vec{y} \in \ker(u) \cap \operatorname{Im}(u)$. Alors $u(\vec{y}) = \vec{0}$ et $\exists \vec{x} \in E$ tel que $\vec{y} = u(\vec{x})$. Donc $u^2(\vec{x}) = u(\vec{y}) = \vec{0}$ donc $\vec{x} \in \ker(u^2) = \ker(u)$ donc $\vec{y} = u(\vec{x}) = \vec{0}$.

Donc $\ker(u) \cap \operatorname{Im}(u) = \{\vec{0}\}\$

Ainsi $\ker(u) \cap \operatorname{Im}(u) = \left\{ \vec{0} \right\} \Leftrightarrow \ker(u) = \ker(u^2).$

3c Montrer que $E = \ker(u) \oplus \operatorname{Im}(u) \Leftrightarrow (\operatorname{Im}(u) = \operatorname{Im}(u^2))$ et $\ker(u) = \ker(u^2)$.

On a donc:

$$E = \ker(u) \oplus \operatorname{Im}(u) \Leftrightarrow \left(E = \ker(u) + \operatorname{Im}(u) \text{ et } \ker(u) \cap \operatorname{Im}(u) = \left\{\vec{0}\right\}\right)$$

$$\Leftrightarrow \left(\operatorname{Im}(u) = \operatorname{Im}(u^2) \text{ et } \ker(u) = \ker(u^2)\right)$$

Partie 2 : un exemple : Dans cette question, $E = \mathbb{R}^3$ et u est l'application définie par :

$$u: (x, y, z) \mapsto u(x, y, z) = (4x - y + 5z, -2x - y - z, -4x + y - 5z)$$

4a Justifier que u est un endomorphisme de \mathbb{R}^3

On a $\begin{pmatrix} 4 & -1 & 5 \\ -2 & -1 & -1 \\ -4 & 1 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4x - y + 5z \\ -2x - y - z \\ -4x + y - 5z \end{pmatrix}$ donc u est un endomorphisme de \mathbb{R}^3

car c'est l'endomorphisme de \mathbb{R}^3 canoniquement associé à $A = \begin{pmatrix} 4 & -1 & 5 \\ -2 & -1 & -1 \\ -4 & 1 & -5 \end{pmatrix}$.

4b Déterminer une base de $\ker(u)$ et une base de $\operatorname{Im}(u)$.

Soit $\vec{w} = (x, y, z) \in \mathbb{R}^3$. On a :

$$\vec{w} \in \ker(u) \Leftrightarrow \begin{cases} 4x - y + 5z = 0 \\ -2x - y - z = 0 \\ -4x + y - 5z = 0 \end{cases} \Leftrightarrow \begin{cases} -3y + 3z = 0 & L_1 + 2L_2 \\ -2x - y - z = 0 & L_2 \\ 3y - 3z = 0 & L_3 - 2L_2 \end{cases} \Leftrightarrow \begin{cases} y = z \\ x = \frac{-y - z}{2} = -z \end{cases}$$
$$\Leftrightarrow \vec{w} = (-z, z, z) \Leftrightarrow \vec{w} \in Vect(\vec{a}) \text{ avec } \vec{a} = (-1, 1, 1)$$

Ainsi, $\ker(u) = Vect(\vec{a})$.

D'après la formule du rang, on en déduit rg(u) = 2. Or Im(u) est engendré par les vecteurs

(associés aux) colonnes de A. Les deux premières colonnes étant non colinéaires forment une famille libre de $\operatorname{Im}(u)$, dont la dimension est 2, donc une base de $\operatorname{Im}(u)$. On note $\vec{b}=(4,-2,-4)$ et la deuxième colonne est en fait $-\vec{a}$. Donc $\left(\vec{a},\vec{b}\right)$ est une base de $\operatorname{Im}(u)$.

4c En déduire que la propriété $\mathbb{R}^3 = \ker(u) \oplus \operatorname{Im}(u)$ est fausse.

On observe donc $\vec{a} \in \ker(u) \cap \operatorname{Im}(u)$ donc ils ne sont pas en somme directe et la propriété $\mathbb{R}^3 = \ker(u) \oplus \operatorname{Im}(u)$ est fausse.

5a Déterminer une base de $\ker(u^2)$ et une base de $\operatorname{Im}(u^2)$.

On a:

$$A^{2} = \begin{pmatrix} 4 & -1 & 5 \\ -2 & -1 & -1 \\ -4 & 1 & -5 \end{pmatrix} \begin{pmatrix} 4 & -1 & 5 \\ -2 & -1 & -1 \\ -4 & 1 & -5 \end{pmatrix} = \begin{pmatrix} -2 & 2 & -4 \\ -2 & 2 & -4 \\ 2 & -2 & 4 \end{pmatrix}$$

Donc:

$$\vec{w} = (x, y, z) \in \ker(u^2) \Leftrightarrow \begin{cases} -2x + 2y - 4z = 0 \\ -2x + 2y - 4z = 0 \end{cases} \Leftrightarrow 2x - 2y + 4z = 0 \Leftrightarrow x = y - 2z \\ 2x - 2y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \vec{w} = (y - 2z, y, z) = y(1, 1, 0) + z(-2, 0, 1)$$

donc $\ker\left(u^2\right) = Vect\left(\vec{a}', \vec{b}'\right)$ avec $\vec{a}' = (1, 1, 0)$ et $\vec{b}' = (-2, 0, 1)$. Or ils sont non colinéaires donc $\left(\vec{a}', \vec{b}'\right)$ est une base de $\ker\left(u^2\right)$.

D'autre part, les colonnes de A^2 sont tous proportionnelles à (1,1,11) et engendrent $\operatorname{Im}(u^2)$ donc $\vec{c}' = (1,1,-1)$ est une base de $\operatorname{Im}(u^2)$.

5b Montrer que $\mathbb{R}^{3} = \ker\left(u^{2}\right) \oplus \operatorname{Im}\left(u^{2}\right)$.

Soit $\vec{w} = (x, y, z) \in \ker(u^2) \cap \operatorname{Im}(u^2)$. Alors $\vec{w} = (x, y, z) \in \operatorname{Im}(u^2)$ donc $\exists \alpha \in \mathbb{R}$ tel que $\vec{w} = (\alpha, \alpha, -\alpha)$. Et $\vec{w} \in \ker(u^2)$ donc $\alpha - \alpha - 2\alpha = 0$ donc $\alpha = 0$ donc $\vec{w} = \vec{0}$ donc $\ker(u^2) \cap \operatorname{Im}(u^2) = \{\vec{0}\}$ donc le théorème du rang permet de conclure $\mathbb{R}^3 = \ker(u^2) \oplus \operatorname{Im}(u^2)$.

Partie 3 : Cas général : Dans cette parite, E est un k-espace vectoriel et u un endomorphisme de E. On appelle coeur de l'endomorphisme u, noté C, la partie de E définie par : pour tout $\vec{x} \in E$:

$$\vec{x} \in C \Leftrightarrow \forall k \in \mathbb{N}, \ \vec{x} \in \operatorname{Im}\left(u^{k}\right)$$

On appelle nilespace de l'endomorphisme u, noté N, la partie de E définie par : pour tout $\vec{x} \in E$:

$$\vec{x} \in N \Leftrightarrow \exists k \in \mathbb{N} \text{ tel que } \vec{x} \in \ker (u^k)$$

Enfin, on dit qu'un sous-espace vectoriel F de E est stable par u si et seulement si $\forall \vec{x} \in F$, $u(\vec{x}) \in F$.

6 Soient n, k deux entiers naturels. Montrer que ker (u^k) et $\operatorname{Im}(u^k)$ sont stables par u^n .

Soit $\vec{x} \in \ker(u^k)$. Alors $u^k(u^n(\vec{x})) = u^{k+n}(\vec{x}) = u^n(u^k(\vec{x})) = u^n(\vec{0}) = \vec{0}$ donc $u^n(\vec{x}) \in \ker(u^k)$ donc $\ker(u^k)$ est stable par u^n .

Soit $\vec{y} \in \text{Im}(u^k)$. Alors $\exists \vec{x} \in E$ tel que $\vec{y} = u^k(\vec{x})$. Donc $u^n(\vec{y}) = u^n(u^k(\vec{x})) = u^{n+k}(\vec{x}) = u^k(u^n(\vec{x})) \in \text{Im}(u^k)$ donc $\text{Im}(u^k)$ est stable par u^n .

7 On rappelle que d'après la partie 1, pour tout $k \in \mathbb{N}$: $\ker (u^k) \subset \ker (u^{k+1})$ et $\operatorname{Im} (u^{k+1}) \subset \operatorname{Im} (u^k)$.

7a Montrer que C et N sont des sous-espaces vectoriels de E.

- \bullet $C \subset E$
- $\vec{0} \in C$ car pour tout $k \in \mathbb{N}$, $\vec{0} \in \text{Im}(u^k)$ (car $\text{Im}(u^k)$ est un sev de E).
- Soient $\vec{y}, \vec{y}' \in C$ et $\lambda, \mu \in \mathbb{R}$. Alors pour tout $k \in \mathbb{N}$, $\vec{y}, \vec{y}' \in \text{Im}(u^k)$ donc $\lambda \vec{y} + \mu \vec{y}' \in \text{Im}(u^k)$ (c'est un sev de E). Donc $\lambda \vec{y} + \mu \vec{y}' \in C$.
- \bullet Donc C est un sous-espace vectoriel de E.
- \bullet $N \subset E$
- $\vec{0} \in N \text{ car } \vec{0} \in \ker(u)$.
- Soient $\vec{x}, \vec{x}' \in N$ et $\lambda, \mu \in \mathbb{R}$. Alors il existe $k, k' \in \mathbb{N}$ tels que $\vec{x} \in \ker (u^k)$ et $\vec{x}' \in \ker (u^{k'})$. Notons $K = \max(k, k')$. On a alors $\vec{x}, \vec{x}' \in \ker (u^K)$ donc $\lambda \vec{x} + \lambda \vec{x}' \in \ker (u^K)$. Donc $\lambda \vec{x} + \lambda \vec{x}' \in N$.
- Donc N est un sous-espace vectoriel de E.

7b Montrer que C et N sont stables par u.

- Soit $\vec{y} \in C$. Alors pour tout $k \in \mathbb{N}$, $\vec{y} \in \text{Im}(u^k)$ donc $u(\vec{y}) \in \text{Im}(u^k)$ car $\text{Im}(u^k)$ est stable par u. Donc $u(\vec{y}) \in C$. Donc C est stable par u.
- Soit $\vec{x} \in N$ alors il existe $k \in \mathbb{N}$.tel que $\vec{x} \in \ker(u^k)$. Donc $u(\vec{x}) \in \ker(u^k)$ car $\ker(u^k)$ est stable par u. Donc $u(\vec{x}) \in N$. Donc N est stable par u.

7c Montrer que u surjectif $\Leftrightarrow C = E$.

- (⇒) Supposons u surjectif. Alors pour tout $k \in \mathbb{N}$, (même k = 0, cas particulier), u^k est surjectif comme composée de surjections. Donc Im $(u^k) = E$ donc $\forall \vec{x} \in E, \vec{x} \in C$. Donc C = E.
- (\Leftarrow) Supposons C = E. Alors $\forall \vec{x} \in E$, $\vec{x} \in \text{Im}(u)$ (prendre k = 1). Donc u est surjectif.

7d Montrer que u injectif $\Leftrightarrow N = \{\vec{0}\}$.

(⇒) Supposons u injectif. Alors pour tout $k \in \mathbb{N}$, (même k = 0, cas particulier), u^k est injectif comme composée d'injections. Donc $\ker (u^k) = \{\vec{0}\}$ donc si $\vec{x} \in \mathbb{N}$, il existe $k \in \mathbb{N}$ tel que $\vec{x} \in \ker (u^k)$ donc $\vec{x} = \vec{0}$.

Donc $N = \{\vec{0}\}$.

- (\Leftarrow) Supposons $N = \{\vec{0}\}$. Soit $\vec{x} \in \ker(u)$. Alors $\vec{x} \in N$ donc $\vec{x} = \vec{0}$. Donc $\ker(u) = \{\vec{0}\}$ donc u est injectif.
- **8** On suppose dans les questions 8a et 8b qu'il existe un rang $k \in \mathbb{N}^*$ tel que $\operatorname{Im}(u^k) = \operatorname{Im}(u^{k+1})$.
- **8a** Vérifier que pour tout $n \in \mathbb{N}$: Im $(u^{k+n}) = \text{Im}(u^k)$. Montrons ceci par récurrence sur $n \in \mathbb{N}$:

- I.: pour n = 0 c'est trivial (et pour n = 1 c'est l'hypothèse sur k).
- H.: Soit $n \in N$ tel que $\operatorname{Im} \left(u^{k+n} \right) = \operatorname{Im} \left(u^k \right)$. On a déjà $\operatorname{Im} \left(u^{k+n+1} \right) \subset \operatorname{Im} \left(u^{k+n} \right)$. Réciproquement, soit $\vec{y} \in \operatorname{Im} \left(u^{k+n} \right)$. Alors il existe $\vec{x} \in E$ tel que $\vec{y} = u^{k+n} \left(\vec{x} \right) = u^n \left(u^k \left(\vec{x} \right) \right)$. On a $u^k \left(\vec{x} \right) \in \operatorname{Im} \left(u^k \right) = \operatorname{Im} \left(u^{k+1} \right)$ donc il existe $\vec{x}' \in E$ tel que $u^k \left(\vec{x} \right) = u^{k+1} \left(\vec{x}' \right)$. Alors $\vec{y} = u^n \left(u^{k+1} \left(\vec{x}' \right) \right) = u^{k+n+1} \left(\vec{x}' \right) \in \operatorname{Im} \left(u^{k+n+1} \right)$. Donc $\operatorname{Im} \left(u^{k+n} \right) \subset \operatorname{Im} \left(u^{k+n+1} \right)$ donc $\operatorname{Im} \left(u^{k+n+1} \right) = \operatorname{Im} \left(u^k \right)$.
- Conclusion: pour tout $n \in \mathbb{N}$, $\operatorname{Im}(u^{k+n}) = \operatorname{Im}(u^k)$.

8b On note r le plus petit entier k non nul tel que $\operatorname{Im}(u^k) = \operatorname{Im}(u^{k+1})$. Montrer que :

8bi : $C = \text{Im}(u^r)$.

- (\subset) Soit $\vec{y} \in C$. Alors $\forall k \in \mathbb{N}, \ \vec{y} \in \text{Im}(u^k) \text{ donc } \vec{y} \in \text{Im}(u^r)$. Donc $C \subset \text{Im}(u^r)$.
- (\supset) Soit $\vec{y} \in \text{Im}(u^r)$. D'après 8a, on a $\forall k \geq r$, $\text{Im}(u^r) = \text{Im}(u^k)$ donc $\vec{y} \in \text{Im}(u^k)$. D'autre part, d'après la 1b, $\text{Im}(u^r) \subset \text{Im}(u^{r-1}) \subset \cdots \subset \text{Im}(u) \subset \text{Im}(u^0)$. Donc $\forall k \leq r, \ \vec{y} \in \text{Im}(u^k)$. Donc $\forall k \in \mathbb{N}, \ \vec{y} \in \text{Im}(u^k)$ donc $\vec{y} \in C$.
- Donc $C = \operatorname{Im}(u^r)$.

8bii $u\left(C\right)=C$ D'après 7b, $u\left(C\right)\subset C$. Réciproquement, soit $\vec{y}\in C$. Alors $\vec{y}\in \mathrm{Im}\left(u^{r}\right)$ donc $u\left(\vec{y}\right)\in u\left(\mathrm{Im}\left(u^{r}\right)\right)=\mathrm{Im}\left(u^{r+1}\right)=\mathrm{Im}\left(u^{r}\right)=C$. Donc $C\subset u\left(C\right)$. Donc $u\left(C\right)=C$.

- **8biii** $E = \ker(u^r) + \operatorname{Im}(u^r)$ (utiliser la partie 1). D'après 8a, $\operatorname{Im}(u^r) = \operatorname{Im}(u^{2r})$ donc d'après 3a, $E = \ker(u^r) + \operatorname{Im}(u^r)$.
- **9** On suppose dans les questions 9a et 9b qu'il existe un rang $k \in \mathbb{N}^*$ tel que $\ker(u^k) = \ker(u^{k+1})$.
- **9a** Vérifier que pour tout $n \in \mathbb{N}$: $\ker (u^{k+n}) = \ker (u^k)$. Montrons ceci par récurrence sur $n \in \mathbb{N}$:
 - I.: évident pour n = 0.
 - H.: soit $n \in \mathbb{N}$ tel que $\ker (u^{k+n}) = \ker (u^k)$. On a déjà $\ker (u^k) \subset \ker (u^{k+n+1})$. Réciproquement, soit $\vec{x} \in \ker (u^{k+n+1})$. Alors $u^{k+n+1}(\vec{x}) = \vec{0}$ donc $u^{k+n}(u(\vec{x})) = \vec{0}$ donc $u(\vec{x}) \in \ker (u^{k+n}) = \ker (u^k)$. Donc $u^k(u(\vec{x})) = \vec{0}$ donc $\vec{x} \in \ker (u^{k+1}) = \ker (u^k)$. Donc $\ker (u^{k+n+1}) \subset \ker (u^k)$. Ainsi, $\ker (u^{k+n+1}) = \ker (u^k)$.
 - Donc pour tout $n \in \mathbb{N}$, $\ker (u^{k+n}) = \ker (u^k)$.
- **9b** On note s le plus petit entier k non nul tel que $\ker (u^k) = \ker (u^{k+1})$. Montrer que :

9bi $N = \ker(u^s)$.

 $\ker(u^s) \subset N$ est évident par la définition de N.

Réciproquement, soit $\vec{x} \in N$. Alors il existe $k \in \mathbb{N}$ tel que $\vec{x} \in \ker(u^k)$.

Si $k \geq s$, alors d'après 9a, $\ker(u^k) = \ker(u^s)$ donc $\vec{x} \in \ker(u^s)$. Si $k \leq s$, alors d'après 1a, $\ker(u^k) \subset \ker(u^s)$ donc $\vec{x} \in \ker(u^s)$.

Dans tous les cas, $\vec{x} \in \ker(u^s)$. Donc $N \subset \ker(u^s)$ donc $N = \ker(u^s)$.

9bii $\ker(u^s) \cap \operatorname{Im}(u^s) = \{\vec{0}\}\ (\text{utiliser la partie 1}).$

D'après 9a, on a $\ker(u^s) = \ker(u^{2s})$. Donc d'après 3b, $\ker(u^s) \cap \operatorname{Im}(u^s) = \{\vec{0}\}$.