Concours blanc PCSI1 2025

Exercice 1: Fonction Beta d'Euler. Pour tout $(a, b) \in \mathbb{R}^2$ tels que $a \ge 1$ et $b \ge 1$, on pose :

$$\beta(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt$$

1a Justifier soigneusement que cette intégrale est bien définie.

1b A l'aide d'un changement de variable affine, montrer que $\beta(a, b) = \beta(b, a)$.

1c Etablir que $\beta(a, b) = \beta(a + 1, b) + \beta(a, b + 1)$.

1d A l'aide du changement de variables $t = \cos^2(\theta)$, montrer que :

$$\beta(3/2, 3/2) = \frac{\pi}{8}.$$

1e Calculer $\beta(1, n)$ pour tout $n \in \mathbb{N}^*$.

2a Montrer que:

$$\beta\left(a+1,b\right) = \frac{a}{b}\beta\left(a,b+1\right)$$

et en déduire que :

$$\beta\left(a+1,b\right) = \frac{a}{a+b}\beta\left(a,b\right)$$

2b Calculer $\beta(n,p)$ pour tout $n,p \in \mathbb{N}^*$ en exprimant le résultat à l'aide de factorielles.

- **2c** Exprimer $\beta\left(n+\frac{1}{2},p+\frac{1}{2}\right)$ en fonction uniquement de $\beta\left(3/2,p+\frac{1}{2}\right)$, de nombres factoriels et de puissances.
- **2d** Montrer sans rédiger de récurrence que pour tout $n, p \in \mathbb{N}^*$ on a :

$$\beta\left(n+\frac{1}{2},p+\frac{1}{2}\right) = \frac{(2p)!(2n)!}{2^{2(n+p)}(n+p)!n!p!}\pi$$

3 On suppose dans cette question que $a \ge 2$ et $b \ge 2$.

3a On considère une fonction $h:[x,y] \to \mathbb{R}$ où x,y sont deux réels tels que x < y. On suppose que h est de classe \mathcal{C}^1 sur [x,y] et on note M_1 le maximum de |h'(t)| sur [x,y]. Justifier que M_1 est bien défini et que :

$$\int_{x}^{y} h(t) dt = (y - x) h(x) + \int_{x}^{y} h'(t) (y - t) dt$$

En déduire que :

$$\left| \int_{x}^{y} h(t) dt - (y - x) h(x) \right| \le M_{1} \frac{(y - x)^{2}}{2}$$

3b Montrer soigneusement que la fonction $t \mapsto t^{a-1}$ est de classe \mathcal{C}^1 sur [0,1].

- **3c** En déduire que la fonction $t \mapsto t^{a-1} (1-t)^{b-1}$ est de classe \mathcal{C}^1 sur [0,1].
- **3d** En lui appliquant le résultat précédent sur chacun de segments $[x_k, x_{k+1}]$ où $x_k = \frac{k}{n}$ avec $k \in [[0, n-1]]$, montrer que :

$$|\beta(a,b) - u_n| \le \frac{a+b-2}{2n}$$
 où $u_n = \frac{1}{n} \sum_{k=0}^{n-1} \left(\frac{k}{n}\right)^{a-1} \left(1 - \frac{k}{n}\right)^{b-1}$.

Exercice 2 : Soit a un réel strictement positif. On considère la suite $\mathbf{u} = (u_n)_{n \ge 1}$ telle que $u_1 = a$ et pour tout $n \ge 1$, $u_{n+1} = \frac{u_n^2}{\sqrt{n}}$.

L'objet de cet exercice est d'étudier **en fonction de la valeur de** a la convergence de la suite **u**. Selon les valeurs de a, la suite définie est donc différente, ce qui expliquera qu'on puisse dans ce problème dire tantôt que la suite **u** est convergente, et tantôt dire qu'elle est divergente (pour une autre valeur de a).

- 1 Dans cette question, on suppose que a=2. Montrer que pour tout $n \ge 1$, $u_n \ge \sqrt{n} + 1$. Conclure. Dans la suite, a est de nouveau un réel strictement positif quelconque.
- **2** Montrer que pour tout $n \ge 1$, $u_n > 0$.
- **3** On suppose dans cette question que la suite **u** converge vers une limite finie l. Montrer que l=0.
- **4** On suppose dans cette question que la suite **u** vérifie la propriété suivante: $\forall n \geq 1, u_n \geq \sqrt{n}$. Montrer que **u** est une suite croissante qui tend vers $+\infty$.
- 5 On suppose, dans cette question et dans cette question seulement, qu'il existe $k \in \mathbb{N}^*$ tel que $u_k < \sqrt{k}$.
- **5a** Montrer que $\forall n \geq k, u_n < \sqrt{k}$.
- **5b** Montrer que la suite $(u_n)_{n>k}$ est décroissante.
- **5c** Conclure.
- **6** Montrer que pour tout $n \ge 3$, $u_n = \frac{a^{2^{n-1}}}{2^{2^{n-4}} \cdot 3^{2^{n-5}} \cdot 4^{2^{n-6}} \cdot \dots \cdot (n-1)^{2^{-1}}} = \frac{a^{2^{n-1}}}{\prod\limits_{k=2}^{n-1} k^{2^{n-2-k}}}.$

On pose de plus
$$w_n = \sum_{k=2}^{n-1} \frac{\ln(k)}{2^k}$$
.

- 7 Montrer que la suite (w_n) est croissante.
- 8 Montrer en utilisant les questions 3 et 5 que la suite $\mathbf u$ est convergente si et seulement si il existe un entier k>2 tel que $u_k<1.$ —
- **9** Montrer que (u_n) est divergente si et seulement si (w_n) est majorée par $2\ln(a)$.
- 10 En déduire que la suite (w_n) converge. Soit $W = \lim_{n \to +\infty} w_n$. Montrer que (u_n) converge si et seulement si $a < e^{\frac{W}{2}}$.

Problème 1 : Dans la suite, E désigne un \mathbb{R} -espace vectoriel de dimension finie $n \geq 1$ et u un endomorphisme de E.

On rappelle qu'on pose $u^0 = Id_E$ et pour tout $k \in \mathbb{N}$: $u^{k+1} = u^k \circ u$.

Etant donné une partie X de E. On désigne par $Vect\left(X\right)$ l'ensemble des combinaisons linéaires de vecteurs de X.

On dit que l'endomorphisme u est **cyclique** s'il existe un vecteur $\vec{x}_0 \in E$ tel que :

$$E = Vect\left(u^{k}\left(\vec{x}_{0}\right)/k \in \mathbb{N}\right) = Vect\left(\vec{x}_{0}, u\left(\vec{x}_{0}\right), u^{2}\left(\vec{x}_{0}\right), \ldots\right)$$

Les différentes parties sont dans une large mesure indépendantes.

Pour tout polynome $Q(X) = q_0 + q_1 X + \cdots + q_m X^m \in \mathbb{R}[X]$, on pose pour tout $u \in \mathcal{L}(E)$:

$$Q(u) = q_0 I d_E + q_1 u + \dots + q_m u^m \in \mathcal{L}(E)$$

Partie 1: Exemples

1 : Exemple 1 : Dans cette question, on prend $E = \mathbb{R}^3$ et on considère l'application suivante de \mathbb{R}^3 dans \mathbb{R}^3 :

$$u(x, y, z) = (6z, x - 11z, y + 6z)$$

1a Montrer que u est un endomorphisme de E.

1b Calculer u(1,0,0) et $u^2(1,0,0)$ et en déduire que u est un endomorphisme cyclique.

2 : Exemple 2 : Dans cete question, on prend $E = \mathbb{R}^3$ et on considère l'endomorphisme u de E dont la matrice canoniquement associée est $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & -6 \\ 0 & 1 & -1 \end{pmatrix}$

 ${\bf 2a}\,$ Montrer que u est un automorphisme de E (c'est-à dire bijectif).

2b Montrer que $u^2 = \alpha u + \beta I d_E$ pour des réels α et β à déterminer.

2c En déduire que u n'est pas cyclique. Indication : on pourra montrer que pour tout $\vec{x} \in E$, $Vect\left(u^{k}\left(\vec{x}\right)/k \in \mathbb{N}\right) = Vect\left(\vec{x}, u\left(\vec{x}\right)\right)$.

3 : Exemple 3 : Dans cette question $E = \mathbb{R}_n[X]$ et on considère l'endomorphisme u de E défini par u(P) = P'.

3a Soit P_0 un polynôme de degré $d \geq 0$. Montrer que $Vect\left(u^k\left(P_0\right)/k \in \mathbb{N}\right) = \mathbb{R}_d\left[X\right]$.

3b u est-il cyclique?

4 : Exemple 4 : Dans cette question $E = \mathbb{R}_{n-1}[X]$ et on considère l'endomorphisme u de E défini par u(P) = P(X+1) - P(X).

4a Soit $P \in E$. Calculer $\deg(u(P))$ en fonction $\deg(P)$.

4bi Déterminer le noyau de u.

4bii Montrer que $\operatorname{Im}(u) \subset \mathbb{R}_{n-2}[X]$.

4biii En déduire Im(u).

4c L'endomorphisme u est-il cyclique?

- **5 Exemple 5 :** Dans cette question , E est un \mathbb{R} -espace vectoriel de dimension $n \geq 2$. Soit u un endomorphisme nilpotent d'indice $p \geq 2$, c'est-à dire que $u^p = 0_{\mathcal{L}(E)}$ et $u^{p-1} \neq 0_{\mathcal{L}(E)}$.
- **5a** Montrer qu'il existe un vecteur \vec{x}_0 de E tel que la famille $(\vec{x}_0, u(\vec{x}_0), \dots, u^{p-1}(\vec{x}_0))$ est libre. Que peut-on en déduire sur p?
- **5b** En déduire que u est cyclique si et seulement si p = n.
- **Partie 2 : Etude générale.** Dans cette partie, u est un endomorphisme cyclique de E et dim $(E) = n \ge 1$. On fixe un vecteur $\vec{x}_0 \in E$ tel que $E = Vect\left(u^k\left(\vec{x}_0\right)/k \in \mathbb{N}\right)$.
- **6a** Montrer que la famille $(\vec{x}_0, u(\vec{x}_0), \dots, u^n(\vec{x}_0))$ est liée.
- **6b** Montrer qu'il existe un entier p maximal pour-lequel la famille $(\vec{x}_0, u(\vec{x}_0), \dots, u^p(\vec{x}_0))$ est libre.
- **6c** Montrer que $u^{p+1}(\vec{x}_0) \in Vect(\vec{x}_0, u(\vec{x}_0), \dots, u^p(\vec{x}_0))$.
- **6d** Montrer par récurrence que pour tout $k \in \mathbb{N}$, $u^{k}(\vec{x}_{0}) \in Vect(\vec{x}_{0}, u(\vec{x}_{0}), \dots, u^{p}(\vec{x}_{0}))$
- **6e** En déduire que $(\vec{x}_0, u(\vec{x}_0), \dots, u^p(\vec{x}_0))$ est une base de E et que p = n 1
- **7a** Justifier l'existence de $(p_0, p_1, \dots, p_{n-1}) \in \mathbb{R}^n$ tels que :

$$u^{n}(\vec{x}_{0}) = p_{0}\vec{x}_{0} + p_{1}u(\vec{x}_{0}) + \dots + p_{n-1}u^{n-1}(\vec{x}_{0})$$

Dans la suite, on posera $P(X) = X^n - p_{n-1}X^{n-1} - \dots - p_1X - p_0 \in \mathbb{R}[X]$.

7b Déterminer l'image par l'endomorphisme P(u) (voir sa défintion en début de problème) des vecteurs de la base $(\vec{x}_0, u(\vec{x}_0), \dots, u^{n-1}(\vec{x}_0))$.

En déduire que $P(u) = 0_{\mathcal{L}(E)}$.

On dit que P est un polynome annulateur de u.

- **7c** Montrer que $(Id_E, u, \ldots, u^{n-1})$ est une famille libre de $\mathcal{L}(E)$. Est-ce une base de $\mathcal{L}(E)$?
- 7d En déduire que :
 - Il n'existe aucun polynome non nul Q de degré strictement inférieur à n tel que $Q(u) = 0_{\mathcal{L}(E)}$.
 - P est l'unique polynome unitaire de degré n tel que $P(u) = 0_{\mathcal{L}(E)}$. Le polynome P est appelé le polynome minimal de u.

7e Application : déterminer le polynome minimal de l'endomorphisme u de la question 1.

Partie 3 : étude du commutant. Dans cette partie, u désigne toujours un endomorphisme cyclique de l'espace vectoriel E, avec E de dimension $n \ge 1$.

On fixe $\vec{x}_0 \in E$ tel que $E = Vect(u^k(\vec{x}_0)/k \in \mathbb{N})$.

On rappelle qu'alors, la famille $(\vec{x_0}, u(\vec{x_0}), \dots, u^{n-1}(\vec{x_0}))$ est une base de E.

- 8 Montrer que le commutant $C(u)=\{v\in\mathcal{L}\left(E\right)/u\circ v=v\circ u\}$ est un sous-espace vectoriel de $\mathcal{L}\left(E\right)$.
- **9** Notons $\mathbb{R}[u] = \{Q(u)/Q \in \mathbb{R}[X]\}$. Montrer que $\mathbb{R}[u] \subset C(u)$.

10a Soient deux endomorphismes v et w de C(u). Montrer que, si $v(\vec{x}_0) = w(\vec{x}_0)$, alors v = w.

10b Soit $v \in C(u)$.

10bi Justifier l'existence de $(a_{0,...},a_{-1}) \in \mathbb{R}^n$ tels que $v(\vec{x}_0) = a_{n-1}u^{n-1}(\vec{x}_0) + \cdots + a_1u(\vec{x}_0) + a_0\vec{x}_0$.

10bii Montrer que $v = a_{n-1}u^{n-1} + \dots + a_1u + a_0Id_E$.

- **11** Décrire C(u).
- 12 Déterminer la dimension de C(u).

Exercice 1 : Fonction Beta d'Euler. Pour tout $(a,b) \in \mathbb{R}^2$ tels que $a \ge 1$ et $b \ge 1$, on pose :

$$\beta(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt$$

 ${f 1a}$ Justifier soigneusement que cette intégrale est bien définie.

Si a>1, pour t>0, $t\mapsto t^{a-1}=e^{(a-1)\ln(t)}$ a pour limite 0 quand t tend vers 0^+ . On la prolonge par continuité en 0 en posant $0^a = 0$.

De même, si b > 1, on prolonge $t \mapsto t^{b-1} = e^{(b-1)\ln(t)}$ par continuité en 1 en prenant 0 comme valeur.

Dans les cas a=1 et b=1, ces fonctions sont polynomiales dont continues (sur \mathbb{R} dans ces

Ainsi, la fonction $t \mapsto t^{a-1} (1-t)^{b-1}$ est continue sur [0,1] comme produit de fonctions continues donc cette intégrale est bien définie.

1b A l'aide d'un changement de variable affine, montrer que $\beta\left(a,b\right)=\beta\left(b,a\right)$.

On pose u = 1 - t d'où du = -dt et :

$$\beta(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt = \int_1^0 (1-u)^{a-1} u^{b-1} (-du)$$
$$= \int_0^1 u^{b-1} (1-u)^{a-1} du = \beta(b,a).$$

1c Etablir que $\beta(a, b) = \beta(a + 1, b) + \beta(a, b + 1)$.

On a:

$$\beta(a+1,b) + \beta(a,b+1) = \int_0^1 \left(t^a (1-t)^{b-1} + t^{a-1} (1-t)^b \right) dt$$
$$= \int_0^1 t^{a-1} (1-t)^{b-1} (t+1-t) dt$$
$$= \int_0^1 t^{a-1} (1-t)^{b-1} dt = \beta(a,b).$$

1d A l'aide du changement de variables $t = \cos^2(\theta)$, montrer que :

$$\beta(3/2, 3/2) = \frac{\pi}{8}.$$

On a $\beta(3/2, 3/2) = \int_0^1 \sqrt{t(1-t)} dt$ et on pose $t = \cos^2(\theta)$ d'où $dt = -2\sin(\theta)\cos(\theta) d\theta$ et : $\beta(3/2, 3/2) = \int_{-\pi/2}^{0} \sqrt{\cos^{2}(\theta) (1 - \cos^{2}(\theta))} (-2) \sin(\theta) \cos(\theta) d\theta$ $= 2 \int_{0}^{\pi/2} \sqrt{\cos^2(\theta) \sin^2(\theta)} \sin(\theta) \cos(\theta) d\theta$ $= 2 \int_{0}^{\pi/2} (\sin(\theta)\cos(\theta))^{2} d\theta \text{ (sin et cos sont positives sur } \left[0, \frac{\pi}{2}\right])$ $= \frac{1}{2} \int_{0}^{\pi/2} \sin^2(2\theta) d\theta = \frac{1}{2} \int_{0}^{\pi/2} \frac{1 - \cos(4\theta)}{2} d\theta = \frac{1}{4} \left[\theta - \frac{\sin(4\theta)}{4} \right]^{\pi/2}$

$$= \frac{1}{2} \int_0^{\pi} \sin^{\pi}(2\theta) d\theta = \frac{1}{2} \int_0^{\pi} \frac{1}{2} d\theta = \frac{1}{4} \left[\theta - \frac{1}{4} \sin(2\pi) + \frac{1}{4} \sin(0) \right] = \frac{\pi}{8}.$$

1e Calculer $\beta(1, n)$ pour tout $n \in \mathbb{N}^*$.

On a:

$$\beta(1,n) = \int_0^1 (1-t)^{n-1} dt = \left[-\frac{(1-t)^n}{n} \right]_0^1 = \frac{1}{n}$$

2a A l'aide d'une intégration par parties, montrer que :

$$\beta\left(a+1,b\right) = \frac{a}{b}\beta\left(a,b+1\right)$$

et en déduire que :

$$\beta\left(a+1,b\right) = \frac{a}{a+b}\beta\left(a,b\right)$$

On a en posant $\begin{cases} u\left(t\right)=t^{a} \\ v\left(t\right)=-\frac{\left(1-t\right)^{b}}{b} \end{cases}, \begin{cases} u'\left(t\right)=at^{a-1} \\ v'\left(t\right)=\left(1-t\right)^{b-1} \end{cases} \text{ donc par IPP}:$

$$\beta(a+1,b) = \int_0^1 t^a (1-t)^{b-1} dt = \left[-t^a \frac{(1-t)^b}{b} \right]_0^1 + \int_0^1 a t^{a-1} \frac{(1-t)^b}{b} dt$$
$$= \frac{a}{b} \int_0^1 t^{a-1} (1-t)^b dt = \frac{a}{b} \beta(a,b+1)$$

Or d'après 1c, $\beta(a,b) = \beta(a+1,b) + \beta(a,b+1)$ donc :

$$\beta(a+1,b) = \beta(a,b) - \beta(a,b+1)$$

$$= \beta(a,b) - \beta(b+1,a)$$

$$= \beta(a,b) - \frac{b}{a}\beta(b,a+1)$$

$$= \beta(a,b) - \frac{b}{a}\beta(a+1,b)$$

donc
$$\left(1+\frac{b}{a}\right)\beta\left(a+1,b\right)=\beta\left(a,b\right)$$
 donc $\beta\left(a+1,b\right)=\frac{a}{a+b}\beta\left(a,b\right)$.

2b Calculer β (n,p) pour tout $n,p\in\mathbb{N}^*$ en exprimant le résultat à l'aide de factorielles. On a donc :

$$\beta(n,p) = \frac{n-1}{n-1+p}\beta(n-1,p)$$

$$= \frac{n-1}{n+p-1}\frac{n-2}{n+p-2}\frac{n-3}{n+p-3}\cdots\frac{1}{p+1}\beta(1,p)$$

$$= \frac{(n-1)!p!}{(n+p-1)!}\beta(1,p) = \frac{(n-1)!p!}{(n+p-1)!}\frac{1}{p}$$

$$= \frac{(n-1)!(p-1)!}{(n+p-1)!}$$

2c et 2d Montrer que pour tout $n, p \in \mathbb{N}^*$ on a :

$$\beta \left(n + \frac{1}{2}, p + \frac{1}{2} \right)_{7} = \frac{(2p)! (2n)!}{2^{2(n+p)} (n+p)! n! p!} \pi$$

D'après 2a, on a :

$$\beta\left(n+\frac{1}{2},p+\frac{1}{2}\right) = \frac{n-\frac{1}{2}}{n+p}\beta\left(n-\frac{1}{2},p+\frac{1}{2}\right)$$

$$= \frac{n-\frac{1}{2}}{n+p}\frac{n-\frac{3}{2}}{n+p-1}\frac{n-\frac{5}{2}}{n+p-2}\cdots\frac{\frac{3}{2}}{p+2}\beta\left(3/2,p+\frac{1}{2}\right)$$

$$= \frac{1}{2^{n-1}}\frac{(2n-1)}{n+p}\frac{(2n-3)}{n+p-1}\frac{(2n-5)}{n+p-2}\cdots\frac{3}{p+2}\beta\left(3/2,p+\frac{1}{2}\right)$$

$$= \frac{1}{2^{n-1}}\frac{(2n-1)!}{(2n-2)(2n-4)\cdots2}\frac{(p+1)!}{(n+p)!}\beta\left(3/2,p+\frac{1}{2}\right)$$

$$= \frac{1}{2^{n-1}}\frac{1}{2^{n-1}}\frac{(2n-1)!}{(n-1)!}\frac{(p+1)!}{(n+p)!}\beta\left(3/2,p+\frac{1}{2}\right)$$

Rappelons $\beta(3/2,3/2) = \frac{\pi}{8}$. On a donc toujours avec 1b et 2a:

$$\beta\left(3/2, p + \frac{1}{2}\right) = \beta\left(p + \frac{1}{2}, 3/2\right) = \frac{p - \frac{1}{2}}{p + 1}\beta\left(p - \frac{1}{2}, \frac{3}{2}\right)$$

$$= \frac{p - \frac{1}{2}}{p + 1}\frac{p - \frac{3}{2}}{p} \cdots \frac{\frac{3}{2}}{3}\beta\left(\frac{3}{2}, \frac{3}{2}\right)$$

$$= \frac{1}{2^{p - 1}}\frac{2p - 1}{p + 1}\frac{2p - 3}{p} \cdots \frac{3}{3}\beta\left(\frac{3}{2}, \frac{3}{2}\right)$$

$$= \frac{1}{2^{p - 1}}\frac{(2p - 1)!}{(2p - 2)(2p - 4) \cdots 4.3.2}\frac{2}{(p + 1)!}\beta\left(\frac{3}{2}, \frac{3}{2}\right)$$

$$= \frac{1}{2^{p - 1}}\frac{1}{2^{p - 1}}\frac{(2p - 1)!}{(p - 1)!(p + 1)!}\frac{\pi}{4}$$

$$= \frac{1}{2^{p}}\frac{1}{2^{p}}\frac{(2p - 1)!}{(p - 1)!(p + 1)!}\pi$$

donc:

$$\beta\left(n+\frac{1}{2},p+\frac{1}{2}\right) = \frac{1}{2^{n-1}} \frac{1}{2^{n-1}} \frac{(2n-1)!}{(n-1)!} \frac{(p+1)!}{(n+p)!} \beta\left(3/2,p+\frac{1}{2}\right)$$

$$= \frac{1}{2^{n-1}} \frac{1}{2^{n-1}} \frac{(2n-1)!}{(n-1)!} \frac{(p+1)!}{(n+p)!} \frac{1}{2^p} \frac{1}{2^p} \frac{(2p-1)!}{(p-1)!(p+1)!} \pi$$

$$= \frac{4}{2^{2n}} \frac{1}{2^{2p}} \frac{2n(2n-1)!}{2n(n-1)!} \frac{(p+1)!}{(n+p)!} \frac{(2p-1)!}{(p-1)!(p+1)!} \pi$$

$$= \frac{2}{2^{2n}} \frac{1}{2^{2p}} \frac{(2n)!}{n!} \frac{1}{(n+p)!} \frac{2p(2p-1)!}{2p(p-1)!} \pi$$

$$= \frac{1}{2^{2n}} \frac{1}{2^{2p}} \frac{(2n)!}{n!} \frac{1}{(n+p)!} \frac{(2p)!}{p!} \pi = \frac{(2p)!(2n)!}{2^{2(n+p)}(n+p)!n!p!} \pi$$

3 On suppose dans cette question que $a \ge 2$ et $b \ge 2$.

3a On considère une fonction $h:[x,y] \to \mathbb{R}$ où x,y sont deux réels tels que x < y. On suppose que h est de classe C^1 sur [x,y] et on note M_1 le maximum de |h'(t)| sur [x,y]. Justifier que M_1 est bien défini et que :

$$\int_{x}^{y} h(t) dt = (y - x) h(x) + \int_{x}^{y} h'(t) (y - t) dt$$

h' est continue sur le segment [x, y] donc le théorème des bornes atteintes justifie l'existence de M_1 .

En intégrant par parties avec $\left\{ \begin{array}{l} u\left(t\right)=h\left(t\right)\\ v\left(t\right)=t-y \end{array} \right., \left\{ \begin{array}{l} u'\left(t\right)=h'\left(t\right)\\ v'\left(t\right)=1 \end{array} \right., \text{ on a :} \right.$

$$\int_{x}^{y} h(t) dt = [(t - y) h(t)]_{x}^{y} - \int_{x}^{y} h'(t) (t - y) dt$$
$$= (y - x) h(x) + \int_{x}^{y} h'(t) (y - t) dt$$

En déduire que :

$$\left| \int_{x}^{y} h(t) dt - (y - x) h(x) \right| \le M_{1} \frac{(y - x)^{2}}{2}$$

On a donc par inégalité triangulaire sur les intégrales :

$$\left| \int_{x}^{y} h(t) dt - (y - x) h(x) \right| = \left| \int_{x}^{y} h'(t) (y - t) dt \right| \le \int_{x}^{y} |h'(t) (y - t)| dt$$

$$\le \int_{x}^{y} M_{1} |(y - t)| dt \operatorname{car} x < y$$

$$\le M_{1} \int_{x}^{y} (y - t) dt \operatorname{car} x < y \operatorname{donc} y - t \ge 0$$

$$\le M_{1} \left[-\frac{(y - t)^{2}}{2} \right]_{x}^{y} = M_{1} \frac{(y - x)^{2}}{2}$$

3b Montrer soigneusement que la fonction $t \mapsto t^{a-1}$ est de classe \mathcal{C}^1 sur [0,1].

Si a=2, c'est évident.

Si a > 2, notons $g(t) = t^{a-1}$. g est de classe C^1 sur]0,1] et $\forall t \in]0,1]$, $g'(t) = (a-1)t^{a-2}$ donc $\lim_{t \to 0^+} g'(t) = 0$ car a > 2.

De plus, g est continue en 0 (en ayant porlongé par conitruité en posant g(0) = 0).

Donc d'après le théorème de la limite de la dérivée, g est de classe \mathcal{C}^1 sur [0,1].

3c En déduire que la fonction $t \mapsto t^{a-1} (1-t)^{b-1}$ est de classe \mathcal{C}^1 sur [0,1].

Puisque $b \ge 2$, par composition avec $t \mapsto 1 - t$, on déduit de 3b que $t \mapsto (1 - t)^{b-1}$ est de classe \mathcal{C}^1 sur [0,1]..

Donc $t \mapsto t^{a-1} (1-t)^{b-1}$ est de classe \mathcal{C}^1 sur [0,1] comme produit de fonctions de classe \mathcal{C}^1 .

3d En lui appliquant le résultat précédent sur chacun de segments $[x_k, x_{k+1}]$ où $x_k = \frac{k}{n}$ avec $k \in [[0, n-1]]$, montrer que :

$$|\beta(a,b) - u_n| \le \frac{a+b-2}{2n} \text{ où } u_n = \frac{1}{n} \sum_{k=0}^{n-1} \left(\frac{k}{n}\right)^{a-1} \left(1 - \frac{k}{n}\right)^{b-1}.$$

Comme $a-1 \ge 1$ et $b-1 \ge 1$, les fonctions $t \mapsto t^{a-1}$ et $t \mapsto (1-t)^{b-1}$ sont de classe \mathcal{C}^1 sur [0,1] donc $t \mapsto t^{a-1} (1-t)^{b-1}$ aussi par produit de fonctions de classe 1 .

En lui appliquant le résultat précedent sur chacun de segments $[x_k, x_{k+1}]$ où $x_k = \frac{k}{\pi}$ avec $k \in$ [|0, n-1|], montrer que :

$$|\beta(a,b) - u_n| \le \frac{a+b-2}{2n}$$
 où $u_n = \frac{1}{n} \sum_{k=0}^{n-1} \left(\frac{k}{n}\right)^{a-1} \left(1 - \frac{k}{n}\right)^{b-1}$.

Notons $h(t) = t^{a-1} (1-t)^{b-1}$, on a donc pour tout $k \in [0, n-1]$

$$\left| \int_{k/n}^{(k+1)/n} h(t) dt - \frac{1}{n} h\left(\frac{k}{n}\right) \right| \le \frac{M_1(k)}{2n^2}$$

où $M_1(k) = \max_{t \in [k/n, (k+1)/n]} |h'(t)|$. Or $h'(t) = (a-1) t^{a-2} (1-t)^{b-1} + (b-1) t^{a-1} (1-t)^{b-2}$ donc tout $t \in [0, 1]$:

$$|h'(t)| \le |(a-1)t^{a-2}(1-t)^{b-1}| + |(b-1)t^{a-1}(1-t)^{b-2}|$$

 $\le (a-1) + (b-1) = a + b - 2$

car $t, 1 - t, t^{a-2}, (1 - t)^{b-1}, t^{a-1}, (1 - t)^{b-2} \in [0, 1]$.

Donc $M_1(k) \leq a + b -$

Donc
$$\left| \int_{k/n}^{(k+1)/n} h(t) dt - \frac{1}{n} h\left(\frac{k}{n}\right) \right| \le \frac{a+b-2}{2n^2}.$$

En appliquant la relation de Chasles, on a alors

$$|\beta(a,b) - u_n| = \left| \sum_{k=0}^{n-1} \int_{k/n}^{(k+1)/n} h(t) dt - \sum_{k=0}^{n-1} \frac{1}{n} h\left(\frac{k}{n}\right) \right|$$

$$= \left| \sum_{k=0}^{n-1} \left(\int_{k/n}^{(k+1)/n} h(t) dt - \frac{1}{n} h\left(\frac{k}{n}\right) \right) \right|$$

$$\leq \sum_{k=0}^{n-1} \left| \int_{k/n}^{(k+1)/n} h(t) dt - \frac{1}{n} h\left(\frac{k}{n}\right) \right|$$

$$\leq \sum_{k=0}^{n-1} \frac{a+b-2}{2n^2}$$

$$\leq \frac{a+b-2}{2n}$$

3c Ecrire un programme Python qui donne une valeur approchée de $\beta(a,b)$ à 10^{-3} près. Voir M. Jacob.

Corrigé de l'exercice 2 :

Soit a un réel strictement positif. On considère la suite $u = (u_n)_{n>1}$ telle que $u_1 = a$ et pour tout $n \ge 1, \ u_{n+1} = \frac{u_n^2}{\sqrt{n}}.$

L'objet de cet exercice est d'étudier en fonction de la valeur de a la convergence de la suite u.

1 Dans cette question, on suppose que a=2. Montrer que pour tout $n\geq 1,\,u_n\geq \sqrt{n}+1$. Conclure.

Par récurrence sur $n \ge 1$:

Initialisation : $u_1 = 2$ et $\sqrt{1} + 1 = 2$.

Hérédité : soit $n \ge 1$. Supposons $u_n \ge \sqrt{n} + 1$. Montrons $u_{n+1} \ge \sqrt{n+1} + 1$

On a:

$$u_{n+1} = \frac{u_n^2}{\sqrt{n}} \ge \frac{(\sqrt{n}+1)^2}{\sqrt{n}} = \frac{n+2\sqrt{n}+1}{\sqrt{n}} = \frac{n+2\sqrt{n}}{\sqrt{n}} + \frac{1}{\sqrt{n}} > \sqrt{n} + 2$$

donc $u_{n+1} - (\sqrt{n+1} + 1) \ge \sqrt{n} + 1 - \sqrt{n+1} \ge 0$ car $\sqrt{n} + 1 \ge \sqrt{n+1} \Leftrightarrow n+1+2\sqrt{n} \ge n+1$, qui est vrai d'où la conclusion.

Dans la suite, a est de nouveau un réel strictement positif quelconque.

2 Montrer que pour tout $n \ge 1$, $u_n > 0$.

Récurrence: $u_1 > 0$. supposons $u_n > 0$ alors $u_n^2 > 0$ donc $u_{n+1} > 0$

3 On suppose dans cette question que la suite u converge vers une limite finie l. Montrer que l=0.

On suppose (u_n) converge vers l alors (u_{n+1}) , suite extraite de (u_n) converge aussi vers l. De plus, (u_n^2) converge vers l^2 donc $\left(\frac{u_n^2}{\sqrt{n}}\right)$ converge vers 0. Or $u_{n+1} = \frac{u_n^2}{\sqrt{n}}$ donc par unicité de la limite, l = 0.

4 On suppose dans cette question que la suite u vérifie la propriété suivante: $\forall n \geq 1, u_n \geq \sqrt{n}$. Montrer que u est une suite croissante qui tend vers $+\infty$.

Soit $n \ge 1$. On a:

$$u_{n+1} - u_n = \frac{u_n^2}{\sqrt{n}} - u_n = \frac{u_n^2 - \sqrt{n}u_n}{\sqrt{n}} = \frac{(u_n - \sqrt{n})u_n}{\sqrt{n}} \ge 0$$

car $u_n \ge \sqrt{n}$ donc (u_n) est une suite croissante. De plus $\lim_{n \to +\infty} \sqrt{n} = +\infty$ donc par théorème de comparaison, $\lim_{n \to +\infty} u_n = +\infty$.

- **5** On suppose, dans cette question et dans cette question seulement, qu'il existe $k \in \mathbb{N}^*$ tel que $u_k < \sqrt{k}$.
- **5a** Montrer que $\forall n \geq k, u_n < \sqrt{k}$.

Récurrence sur $n \ge k$:

Initialisation, $n = k : u_k < \sqrt{k}$.

Hérédité : soit $n \ge k$ fixé. Supposons que $u_n < \sqrt{k}$, montrons $u_{n+1} < \sqrt{k}$.

On a:

$$u_{n+1} = \frac{u_n^2}{\sqrt{n}} < \frac{k}{\sqrt{n}} \le \frac{k}{\sqrt{k}} = \sqrt{k}$$

d'où la conclusion.

5b Montrer que la suite $(u_n)_{n\geq k}$ est décroissante.

Soit $n \ge k$. On a:

$$u_{n+1} - u_n = \frac{u_n^2}{\sqrt{n}} - u_n = \frac{u_n^2 - \sqrt{n}u_n}{\sqrt{n}} = \frac{(u_n - \sqrt{n})u_n}{\sqrt{n}} \le 0$$

car $u_n \leq \sqrt{k} \leq \sqrt{n}$ donc $(u_n)_{n \geq k}$ est une suite décroissante

5c Conclure.

La suite $(u_n)_{n\geq k}$ est une suite décroissante et minorée par 0 donc converge vers $l\geq 0$ donc vers l = 0 d'après 3.)

6 Montrer que pour tout
$$n \ge 3$$
, $u_n = \frac{a^{2^{n-1}}}{2^{2^{n-4}} \cdot 3^{2^{n-5}} \cdot 4^{2^{n-6}} \cdot \dots \cdot (n-1)^{2^{-1}}} = \frac{a^{2^{n-1}}}{\prod\limits_{k=2}^{n-1} k^{2^{n-2-k}}}.$

Récurrence sur $n \geq 3$:

Recurrence sur
$$n \ge 3$$
:
Initialisation: $u_2 = \frac{a^2}{\sqrt{1}}$; $u_3 = \frac{u_2^2}{\sqrt{2}} = \frac{a^4}{\sqrt{2}} = \frac{a^{2^2}}{2^{2^{-1}}}$; $u_4 = \frac{u_3^2}{\sqrt{3}} = \frac{a^8}{2\sqrt{3}} = \frac{a^{2^3}}{2^{2^0} \times 3^{2^{-1}}}$ de même $u_5 = \frac{a^{16}}{2^2 \times 3 \times \sqrt{4}} = \frac{a^{2^4}}{2^{2^1} \times 3^{2^0} \times 4^{2^{-1}}}$. La propriété est donc vraie pour $n = 3, 4, 5$. $(n = 3 \text{ suffit})$.

Hérédité : soit $n \ge 3$. Supposons que $u_n = \frac{a^{2^{n-1}}}{2^{2^{n-4}} \cdot 3^{2^{n-5}} \cdot 4^{2^{n-6}} \cdot \dots \cdot (n-1)^{2^{-1}}}$, montrons : $u_{n+1} = \frac{u}{2^{2^{n-3}} \cdot 3^{2^{n-4}} \cdot 4^{2^{n-5}} \cdot \dots (n-1)^{2^0} n^{2^{-1}}}$

On a:

$$u_{n+1} = \frac{u_n^2}{\sqrt{n}} = \left(\frac{a^{2^{n-1}}}{2^{2^{n-4}} \cdot 3^{2^{n-5}} \cdot 4^{2^{n-6}} \cdot \dots (n-1)^{2^{-1}}}\right)^2 \times \frac{1}{\sqrt{n}}$$

Or pour tout réel x, $\left(x^{2^i}\right)^2 = x^{2 \times 2^i} = x^{2^{i+1}}$ donc :

$$u_{n+1} = \frac{a^{2^n}}{2^{2^{n-3}} \cdot 3^{2^{n-4}} \cdot 4^{2^{n-5}} \cdot \dots (n-1)^{2^0}} \times \frac{1}{\sqrt{n}}$$
$$= \frac{a^{2^n}}{2^{2^{n-3}} \cdot 3^{2^{n-4}} \cdot 4^{2^{n-5}} \cdot \dots (n-1)^{2^0} n^{2^{-1}}}$$

On pose de plus $w_n = \sum_{k=0}^{n-1} \frac{\ln(k)}{2^k}$.

7 Montrer que la suite (w_n) est croissante.

On a: $w_{n+1} = \sum_{k=2}^{n} \frac{\ln(k)}{2^k} = w_n + \frac{\ln(n)}{2^n}$ or $\ln(n) \ge 0$ donc $w_{n+1} \ge w_n$ donc la suite (w_n) est croissante.

Justifiez que l'on pose $W = \lim_{n \to +\infty} w_n$ avec éventuellement $W = +\infty$.

La suite (w_n) étant croissante, elle admet d'après le théorème de la limite monotone une limite finie ou $+\infty$, donc on peut poser $W = \lim_{n \to +\infty} w_n$ avec éventuellement $W = +\infty$.

8 Montrer en utilisant les questions 3 et 5 que la suite u est convergente si et seulement si il existe un entier k > 2 tel que $u_k < 1$.

Supposons que la suite (u_n) converge, alors la suite (u_n) converge vers 0. il existe un entier k>2 à partir duquel $u_n<1$ et en particulier $u_k<1$. Réciproquement, supposons qu'il existe un entier k > 2 tel que $u_k < 1$, alors $u_k < \sqrt{k}$ et donc d'après la question 5, la suite (u_n) est convergente.

9 Montrer que (u_n) est divergente si et seulement si (w_n) est majorée par $2\ln(a)$. On a :

$$\ln(u_n) = \ln\left(\frac{a^{2^{n-1}}}{\prod\limits_{k=2}^{n-1}k^{2^{n-2-k}}}\right) = \ln\left(a^{2^{n-1}}\right) - \ln\left(\prod\limits_{k=2}^{n-1}k^{2^{n-2-k}}\right)$$

$$= 2^{n-1}\ln(a) - \sum_{k=2}^{n-1}\ln\left(k^{2^{n-2-k}}\right) = 2^{n-1}\ln(a) - \sum_{k=2}^{n-1}2^{n-2-k}\ln(k)$$

$$= 2^{n-2}\left(2\ln(a) - \sum_{k=2}^{n-1}2^{-k}\ln(k)\right) = 2^{n-2}\left(2\ln(a) - w_n\right)$$

La suite (u_n) est divergente si et seulement si pour tout entier $n, u_n \ge 1$ c'est-à-dire $\ln(u_n) \ge 0$ soit $2\ln(a) - w_n \ge 0$ c'est-à-dire $w_n \le 2\ln(a)$ donc (u_n) est divergente si et seulement si (w_n) est majorée par $2\ln(a)$.

10 En déduire que la suite (w_n) converge. Soit $W = \lim_{n \to +\infty} w_n$. Montrer que (u_n) converge si et seulement si $a < e^{\frac{W}{2}}$.

On a vu dans la question 1 que pour a=2, la suite (u_n) est divergente donc la suite (w_n) est majorée par $2 \ln (2)$ et est croissante, (w_n) converge donc. La suite (u_n) converge si et seulement si il existe n tel que $w_n > 2 \ln (a)$ ce qui revient à $W > 2 \ln (a)$ car la suite (w_n) est croissante. D'où (u_n) converge si et seulement si $a < e^{\frac{W}{2}}$.

Corrigé du problème 1 : Dans la suite, E désigne un \mathbb{R} -espace vectoriel de dimension finie $n \geq 2$ et u un endomorphisme de E.

On rappelle qu'on pose $u^0 = Id_E$ et pour tout $k \in \mathbb{N} : u^{k+1} = u^k \circ u$.

On dit que l'endomorphisme u est cyclique s'il existe un vecteur $\vec{x}_0 \in E$ tel que :

$$E = Vect\left(u^{k}\left(\vec{x}_{0}\right)/k \in \mathbb{N}\right) = Vect\left(\vec{x}_{0}, u\left(\vec{x}_{0}\right), u^{2}\left(\vec{x}_{0}\right), \ldots\right)$$

Les différentes parties sont dans une large mesure indépendantes.

Partie 1: Exemples

1 : Exemple 1 : Dans cette question, on prend $E = \mathbb{R}^3$ et on considère l'application suivante de \mathbb{R}^3 dans \mathbb{R}^3 :

$$u(x, y, z) = (6z, x - 11z, y + 6z)$$

1a Montrer que u est un endomorphisme de E.

On a $\begin{pmatrix} 0 & 0 & 6 \\ 1 & 0 & -11 \\ 0 & 1 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6z \\ x - 11z \\ y + 6z \end{pmatrix}$ donc u est linéaire car c'est l'applicaition

linéaire canoniquement associée à la matrice $\begin{pmatrix} 0 & 0 & 6 \\ 1 & 0 & -11 \\ 0 & 1 & 6 \end{pmatrix}$. Donc u est un endomorphisme de E.

1b Calculer u(1,0,0) et $u^2(1,0,0)$ et en déduire que u est un endomorphisme cyclique.

On a
$$\begin{pmatrix} 0 & 0 & 6 \\ 1 & 0 & -11 \\ 0 & 1 & 6 \end{pmatrix}$$
 $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ = $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ et $\begin{pmatrix} 0 & 0 & 6 \\ 1 & 0 & -11 \\ 0 & 1 & 6 \end{pmatrix}$ $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ = $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ donc $u(1, 0, 0) = (0, 1, 0)$ et $u^2(1, 0, 0) = (0, 0, 1)$ donc pour $\vec{x}_0 = (1, 0, 0)$, on a :

$$(1,0,0),(0,0,1),(0,0,1) \in Vect(u^{k}(1,0,0)/k \in \mathbb{N})$$

Or on reconnait la base canonique donc c'est une famille génératrice de \mathbb{R}^3 donc E= $Vect\left(u^{k}\left(1,0,0\right)/k\in\mathbb{N}\right).$

Ainsi, u est un endomorphisme cyclique.

2 : Exemple 2 : On considère l'endomorphisme u de $E=\mathbb{R}^3$ dont la matrice canoniquement associée

est
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & -6 \\ 0 & 1 & -1 \end{pmatrix}$$

2a Montrer que u est un automorphisme de E (c'est-à dire bijectif).

On a:

$$\det(A) = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 4 & -6 \\ 0 & 1 & -1 \end{vmatrix} = 2 \begin{vmatrix} 4 & -6 \\ 1 & -1 \end{vmatrix} = 2(-4+6) = 4 \neq 0$$

donc A est inversible, u est bijective et est un automorphisme de \mathbb{R}^3 .

2b Montrer que $u^2 = \alpha u + \beta I d_E$ pour des réels α et β à déterminer.

On a:
$$A^2 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & -6 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & -6 \\ 0 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 10 & -18 \\ 0 & 3 & -5 \end{pmatrix} = 3A - 2I_3$$
. Donc $u^2 = 3u - 2I_4$

2c En déduire que u n'est pas cyclique.Indication : on pourra montrer que pour tout $\vec{x} \in E$, $Vect\left(u^k\left(\vec{x}\right)/k \in \mathbb{N}\right) =$ $Vect(\vec{x}, u(\vec{x}))$.

Pour tout $\vec{x} \in E$, on a $u^2(\vec{x}) = 3u(\vec{x}) - 2\vec{x} \in Vect(\vec{x}, u(\vec{x}))$

On peut ensuite montrer par récurrence sur $k \geq 2$ que $u^k(\vec{x}) \in Vect(\vec{x}, u(\vec{x}))$. (à détailler!).

Puis donc que $Vect(u^k(\vec{x})/k \in \mathbb{N}) = Vect(\vec{x}, u(\vec{x}))$.

Or ceci est de dimension au plus 2 donc ne peut-être $E = \mathbb{R}^3$.

Donc u n'est pas cyclique.

3: Exemple 3: Dans cette question $E = \mathbb{R}_n[X]$ et on considère l'endomorphisme u de E défini par u(P) = P'.

3a Soit P_0 un polynôme de degré $d \geq 0$. Montrer que $Vect\left(u^k\left(P_0\right)/k \in \mathbb{N}\right) = \mathbb{R}_d\left[X\right]$.

On a $u^k(P_0) = P^{(k)}$ pour $0 \le k \le d$ et $u^k(P_0) = 0$ pour k > d.

Ainsi $Vect\left(u^{k}\left(P_{0}\right)/k\in\mathbb{N}\right)=Vect\left(u^{k}\left(P_{0}\right)/k\in\left[\left[0,d\right]\right]\right)$. Or les polynômes $P_{0},u\left(P_{0}\right),\ldots,u^{d}\left(P_{0}\right)$ sont de degrés respectivement $d, d-1, \ldots, 0$ donc forment une famille de polynomes de degrés échelonnés de d à 0 donc une base de $\mathbb{R}_d[X]$. Donc $Vect(u^k(P_0)/k \in [[0,d]]) = \mathbb{R}_d[X]$.

Donc $Vect\left(u^{k}\left(P_{0}\right)/k\in\mathbb{N}\right)=\mathbb{R}_{d}\left[X\right].$

3b u est-il cyclique?

Prenons alors P_0 de degré n, par exemple $P_0 = X^n$. D'après 3a, on a $Vect(u^k(P_0)/k \in \mathbb{N}) =$ $\mathbb{R}_n[X] = E \text{ donc } u \text{ est cyclique.}$ 14

- **4 : Exemple 4 :** On considère l'endomorphisme u de $E = \mathbb{R}_{n-1}[X]$ défini par u(P) = P(X+1) P(X).
- **4a** Soit $P \in E$. Calculer deg (u(P)) en fonction de deg (P).

Soit $P \in \mathbb{R}_{n-1}[X]$ non nul. Posons $d = \deg(P)$ et $P = \sum_{k=0}^{d} a_k X^k$ avec donc $a_d \neq 0$. On a:

$$u(P) = \sum_{k=0}^{d} a_k (X+1)^k - \sum_{k=0}^{d} a_k X^k = \sum_{k=0}^{d} a_k \left((X+1)^k - X^k \right)$$

donc:

- $\deg(u(P)) \le d$
- le coefficient de X^d dans u(P) est $a_d a_d = 0$.
- si $d \ge 1$, le coefficient de X^{d-1} dans u(P) est $da_d + a_{d-1} a_{d-1} = da_d \ne 0$

Donc deg(u(P)) = d - 1.

Ainsi:

$$\deg(u(P)) = \begin{cases} \deg(P) - 1 & \text{si } \deg(P) \ge 1\\ -\infty & \text{sinon} \end{cases}$$

4bi Déterminer le noyau de u.

D'après la question précédente, pour $P \in \mathbb{R}_{n-1}[X]$:

$$P \in \ker(u) \Leftrightarrow u(P) = 0_{\mathbb{R}[X]} \Leftrightarrow \deg u(P) = -\infty \Leftrightarrow \deg(P) \le 0$$

donc ker $(u) = \mathbb{R}_0 [X]$.

4bii Montrer que Im $(u) \subset \mathbb{R}_{n-2}[X]$.

D'après $4a, \forall P \in \mathbb{R}_{n-1}[X], \deg(u(P)) \leq \deg(P) - 1 \leq n-2 \text{ donc}:$

$$\forall P \in \mathbb{R}_{n-1}[X], \ u(P) \in \mathbb{R}_{n-2}[X]$$

donc $\operatorname{Im}(u) \subset \mathbb{R}_{n-2}[X]$.

4biii En déduire Im(u).

D'après le théorème du rang, on a : $\dim (\operatorname{Im} (u)) = \dim (\mathbb{R}_{n-1} [X],) - \dim (\ker (u)) = n-1 = \dim (\mathbb{R}_{n-2} [X]).$

Or $\operatorname{Im}(u) \subset \mathbb{R}_{n-2}[X]$ donc $\operatorname{Im}(u) = \mathbb{R}_{n-2}[X]$.

4c L'endomorphisme u est-il cyclique ?

D'après 4a, on a pour tout $k \in [|0, n-1|]$, $\deg (u^k(X^{n-1})) = n-1-k$.

La famille $(X^{n-1}, u(X^{n-1}), \dots, u^{n-1}(X^{n-1}))$ est donc une famille de polynomes de degrés échelonnés de n-1 à 0 donc est une base de $\mathbb{R}_{n-1}[X]$.

De plus, $u^{k}(X^{n-1}) = 0_{E}$ pour $k \geq n$ donc $Vect\left(u^{k}(X^{n-1})/k \in \mathbb{N}\right) = \mathbb{R}_{n-1}[X] = E$ donc u est cyclique.

5 Exemple 5 : Dans cette question, E est un \mathbb{R} -espace vectoriel de dimension $n \geq 2$. Soit u un endomorphisme nilpotent d'indice $p \geq 2$, c'est-à dire que $u^p = 0_{\mathcal{L}(E)}$ et $u^{p-1} \neq 0_{\mathcal{L}(E)}$.

5a Montrer qu'il existe un vecteur \vec{x}_0 de E tel que la famille $(\vec{x}_0, u(\vec{x}_0), \dots, u^{p-1}(\vec{x}_0))$ est libre. Que peut-on en déduire sur p?

Puisque u^{p-1} n'est pas l'application nulle, il existe $\vec{x}_0 \in E$ tel que $u^{p-1}(\vec{x}_0) \neq \vec{0}$.

Remarquons que pour tout entier $k \geq p$, on a $u^k = u^p \circ u^{k-p} = 0_{\mathcal{L}(E)} \circ u^{k-p} = 0_{\mathcal{L}(E)}$.

Soient $\lambda_0, \dots, \lambda_{p-1} \in \mathbb{R}$ tels que $\lambda_0 \vec{x}_0 + \lambda_1 u(\vec{x}_0) + \dots + \lambda_{p-1} u^{p-1}(\vec{x}_0) = \vec{0}$.

En appliquant u^{p-1} à cette relation il vient $\lambda_0 u^{p-1}(\vec{x}_0) = \vec{0}$ donc $\lambda_0 = 0$.

Supposons par récurrence $\lambda_0 = \cdots = \lambda_{i-1} = 0$ pour $i \leq p-1$.

La relation se réécrit alors $\lambda_i u^i(\vec{x}_0) + \cdots + \lambda_{p-1} u^{p-1}(\vec{x}_0) = \vec{0}$.

On applique cette fois u^{p-1-i} pour obtenir $\lambda_i u^{p-1} (\vec{x}_0) = \vec{0}$ donc $\lambda_i = 0$.

Pour i = p - 1 on obtient alors $\lambda_0 = \dots = \lambda_{p-1} = 0$ donc la famille $(\vec{x}_0, u(\vec{x}_0), \dots, u^{p-1}(\vec{x}_0))$ est libre

Comme c'est une famille libre de p vecteurs de E et dim (E) = n, on a $p \le n$.

- **5b** En déduire que u est cyclique si et seulement si p = n.
 - (\Leftarrow) Supposons p = n. Alors la famille $(\vec{x}_0, u(\vec{x}_0), \dots, u^{p-1}(\vec{x}_0))$ est libre et de cardinal $p = n = \dim(E)$ donc c'est une base de E. Donc u est cyclique.
 - (\$\Rightarrow\$) Supposons u cyclique. Soit alors $\vec{y} \in E$ tel que $E = Vect\left(u^k\left(\vec{y}\right)/k \in \mathbb{N}\right) = Vect\left(\vec{y}, u\left(\vec{y}\right), \dots, u^{p-1}\left(\vec{y}\right)\right)$ car $u^k = 0_{\mathcal{L}(E)}$ pour $k \geq p$ donc $u^k\left(\vec{y}\right) = \vec{0}$ Il s'ensuit que $(\vec{y}, u\left(\vec{y}\right), \dots, u^{p-1}\left(\vec{y}\right))$ est une famille génératrice de E. Donc $Card\left(\vec{y}, u\left(\vec{y}\right), \dots, u^{p-1}\left(\vec{y}\right)\right) \geq \dim\left(E\right)$ donc $p \geq n$. Or $p \leq n$ donc p = n.
- **Partie 2 : Etude générale.** Dans cette partie, u est un endomorphisme cyclique de E et dim $(E) = n \ge 1$. On fixe un vecteur $\vec{x}_0 \in E$ tel que $E = Vect\left(u^k\left(\vec{x}_0\right)/k \in \mathbb{N}\right)$.
- **6a** Montrer que la famille $(\vec{x}_0, u(\vec{x}_0), \dots, u^n(\vec{x}_0))$ est liée. La famille $(\vec{x}_0, u(\vec{x}_0), \dots, u^n(\vec{x}_0))$ est de cardinal n+1 dans un espace vectoriel E de dimension n, elle est donc liée.
- **6b** Montrer qu'il existe un entier p maximal pour-lequel la famille $(\vec{x}_0, u(\vec{x}_0), \dots, u^p(\vec{x}_0))$ est libre. Tout d'abord, notons que comme $E \neq \{\vec{0}\}$ et que $E = Vect(u^k(\vec{x}_0)/k \in \mathbb{N})$, alors $\vec{x}_0 \neq \vec{0}$. Considérons l'ensemble $A = \{k \in \mathbb{N} \mid (\vec{x}_0, u(\vec{x}_0), \dots, u^k(\vec{x}_0)) \text{ est libre}\}$. C'est un ensemble non vide de \mathbb{N} (car $0 \in A$, la famille $\{\vec{x}_{\grave{a}}\}$ étant libre), et majorée par n. $((\vec{x}_0, u(\vec{x}_0), \dots, u^n(\vec{x}_0))$
 - est liée, et toute surfamille de cette famille est donc liée). On en déduit qu'il existe un entier p, maximal, pour lequel la famille $(\vec{x}_0, u(\vec{x}_0), \dots, u^p(\vec{x}_0))$ soit libre.
- **6c** Montrer que $u^{p+1}\left(\vec{x}_{0}\right) \in Vect\left(\vec{x}_{0}, u\left(\vec{x}_{0}\right), \ldots, u^{p}\left(\vec{x}_{0}\right)\right)$.

 Par définition de p, la famille $(\vec{x}_{0}, u\left(\vec{x}_{0}\right), \ldots, u^{p}\left(\vec{x}_{0}\right))$ est libre et $(\vec{x}_{0}, u\left(\vec{x}_{0}\right), \ldots, u^{p}\left(\vec{x}_{0}\right), u^{p+1}\left(\vec{x}_{0}\right))$ est liée. Par le cours, on sait alors que $u^{p+1}\left(\vec{x}_{0}\right) \in Vect\left(\vec{x}_{0}, u\left(\vec{x}_{0}\right), \ldots, u^{p}\left(\vec{x}_{0}\right), u^{p+1}\left(\vec{x}_{0}\right)\right)$.
- **6d** Montrer par récurrence que pour tout $k \in \mathbb{N}$, $u^{k}(\vec{x}_{0}) \in Vect(\vec{x}_{0}, u(\vec{x}_{0}), \dots, u^{p}(\vec{x}_{0}))$.
 - Initialisation. Pour tout $0 \le k \le p$, on a bien $u^k(\vec{x}_0) \in Vect(\vec{x}_0, u(\vec{x}_0), \dots, u^p(\vec{x}_0))$ donc la propriété est vraie aux rang $0 \le k \le p$. Elle est vraie également au rang p+1 par la question précédente.

• Hérédité. Soit $k \geq p$ et supposons la propriété vraie au rang k. Par hypothèse de récurrence, on a $u^k(\vec{x}_0) \in Vect(\vec{x}_0, u(\vec{x}_0), \dots, u^p(\vec{x}_0))$. Il existe donc $\lambda_0, \lambda_1, \dots, \lambda_p \in \mathbb{R}$ tels que :

$$u^{k}\left(\vec{x}_{0}\right) = \lambda_{0}\vec{x}_{0} + \lambda_{1}u\left(\vec{x}_{0}\right) + \dots + \lambda_{p}u^{p}\left(\vec{x}_{0}\right)$$

On compose par u:

$$u^{k+1}(\vec{x}_0) = \lambda_0 u(\vec{x}_0) + \lambda_1 u^2(\vec{x}_0) + \dots + \lambda_p u^{p+1}(\vec{x}_0)$$

Or on a $u(\vec{x}_0), u^2(\vec{x}_0), \dots, u^{p+1}(\vec{x}_0) \in Vect(\vec{x}_0, u(\vec{x}_0), \dots, u^p(\vec{x}_0))$ donc $u^{k+1}(\vec{x}_0) \in Vect(\vec{x}_0, u(\vec{x}_0), \dots, u^p(\vec{x}_0))$. Donc la propriété est vraie au rang k+1.

- Conclusion: pour tout $k \in \mathbb{N}$, $u^{k}(\vec{x}_{0}) \in Vect(\vec{x}_{0}, u(\vec{x}_{0}), \dots, u^{p}(\vec{x}_{0}))$.
- **6e** En déduire que $(\vec{x}_0, u(\vec{x}_0), \dots, u^p(\vec{x}_0))$ est une base de E et que p = n 1. On a montré que pour tout $k \in \mathbb{N}$, $u^k(\vec{x}_0) \in Vect(\vec{x}_0, u(\vec{x}_0), \dots, u^p(\vec{x}_0))$. Ainsi, on a :

$$E = Vect\left(u^{k}\left(\vec{x}_{0}\right)/k \in \mathbb{N}\right) = Vect\left(\vec{x}_{0}, u\left(\vec{x}_{0}\right), \dots, u^{p}\left(\vec{x}_{0}\right)\right)$$

La famille $(\vec{x}_0, u(\vec{x}_0), \dots, u^p(\vec{x}_0))$ est donc génératrice de E. Comme c'est une famille libre par définition de p, c'est donc une base de E. Son cardinal est donc égal à la dimension de

E, soit p + 1 = n.

7a Justifier l'existence de $(p_0, p_1, \dots, p_{n-1}) \in \mathbb{R}^n$ tels que :

$$u^{n}(\vec{x}_{0}) = p_{0}\vec{x}_{0} + p_{1}u(\vec{x}_{0}) + \dots + p_{n-1}u^{n-1}(\vec{x}_{0})$$

On a montré précédemment que $u^n(\vec{x}_0) \in Vect(\vec{x}_0, u(\vec{x}_0), \dots, u^{n-1}(\vec{x}_0))$, donc il existe $(p_0, p_1, \dots, p_{n-1}) \in \mathbb{R}^n$ tels que :

$$u^{n}(\vec{x}_{0}) = p_{0}\vec{x}_{0} + p_{1}u(\vec{x}_{0}) + \dots + p_{n-1}u^{n-1}(\vec{x}_{0})$$

Dans la suite, on posera $P(X) = X^n - p_{n-1}X^{n-1} - \dots - p_1X - p_0 \in \mathbb{R}[X]$.

7b Déterminer l'image par l'endomorphisme P(u) (voir sa défintion en début de problème) des vecteurs de la base $(\vec{x}_0, u(\vec{x}_0), \dots, u^{n-1}(\vec{x}_0))$.

En déduire que $P(u) = 0_{\mathcal{L}(E)}$.

On a $P(u) = u^n - p_{n-1}u^{n-1} - \dots - p_1u - p_0Id_E$ d'où en évaluant en \vec{x}_0 :

$$P(u)(\vec{x}_{0}) = u^{n}(\vec{x}_{0}) - p_{n-1}u^{n-1}(\vec{x}_{0}) - \dots - p_{1}u(\vec{x}_{0}) - p_{0}\vec{x}_{0} = \vec{0}$$

$$P(u)(u(\vec{x}_{0})) = u^{n}(u(\vec{x}_{0})) - p_{n-1}u^{n-1}(u(\vec{x}_{0})) - \dots - p_{1}u(u(\vec{x}_{0})) - p_{0}u(\vec{x}_{0})$$

$$= u(u^{n}(\vec{x}_{0})) - p_{n-1}u(u^{n-1}(\vec{x}_{0})) - \dots - p_{1}u(u(\vec{x}_{0})) - p_{0}u(\vec{x}_{0})$$

$$= u(\vec{0}) = \vec{0}$$

De même, $P(u)(u^{k}(\vec{x}_{0})) = u^{k}(P(u)(\vec{x}_{0})) = u^{k}(\vec{0}) = \vec{0}$ pour tout $0 \le k \le n - 1$.

Ainsi, P(u) est un endomorphisme qui s'annule sur la base $(\vec{x}_0, u(\vec{x}_0), \dots, u^{n-1}(\vec{x}_0))$ donc c'est l'endomorphisme nul : $P(u) = 0_{\mathcal{L}(E)}$.

On dit que P est un polynome annulateur de $\frac{u}{17}$

7c Montrer que $(Id_E, u, \ldots, u^{n-1})$ est une famille libre de $\mathcal{L}(E)$. Est-ce une base de $\mathcal{L}(E)$? soient $\lambda_0, \lambda_1, \ldots, \lambda_{n-1} \in \mathbb{R}$ tels que :

$$\lambda_0 I d_E + \lambda_1 u + \dots + \lambda_{n-1} u^{n-1} = 0_{\mathcal{L}(E)}$$

On évalue en \vec{x}_0 :

$$\lambda_0 \vec{x}_0 + \lambda_1 u(\vec{x}_0) + \dots + \lambda_{n-1} u^{n-1}(\vec{x}_0) = \vec{0}$$

Or la famille de vecteurs $(\vec{x}_0, u(\vec{x}_0), \dots, u^{n-1}(\vec{x}_0))$ est libre dans E. Donc $\lambda_0 = \lambda_1 = \dots = \lambda_{n-1} = 0$. Ainsi $(Id_E, u, \dots, u^{n-1})$ est une famille libre de $\mathcal{L}(E)$.

7d En déduire que :

• Il n'existe aucun polynome non nul Q de degré strictement inférieur à n tel que $Q(u) = 0_{\mathcal{L}(E)}$. Supposons qu'il existe un polynôme $Q = a_0 + a_0 X + \cdots + a_q X^q$ tel que : q < n et $Q(u) = 0_{\mathcal{L}(E)}$.

Alors on aurait : $a_0Id_E + a_0u + \cdots + a_qu^q = 0_{\mathcal{L}(E)}$. Mais la famille (Id_E, u, \dots, u^q) est une sous-famille de la famille $(Id_E, u, \dots, u^{n-1})$ donc est libre (d'après 7c).

Donc $a_0 = a_1 = \ldots = a_q = 0$ donc $Q = 0_{\mathbb{R}[X]}$.

• P est l'unique polynome unitaire de degré n tel que $P(u) = 0_{\mathcal{L}(E)}$. Soit $Q = X^n - a_{n-1}X^{n-1} - \cdots - a_1X - a_0$ un polynôme unitaire de degré n tel que $Q(u) = 0_{\mathcal{L}(E)}$. Alors :

$$u^{n} - a_{n-1}u^{n-1} - \dots - a_{1}u - a_{0}Id_{E} = u^{n} - p_{n-1}u^{n-1} - \dots - p_{1}u - p_{0}Id_{E}$$

donc:

$$a_{n-1}u^{n-1} + \dots + a_1u + a_0Id_E = p_{n-1}u^{n-1} + \dots + p_1u + p_0Id_E$$

et par unicité de la décomposition d'un vecteur dans la famille libre $(Id_E, u, \dots, u^{n-1})$, on a $a_k = p_k$ pour tout $\leq k \leq n-1$.

Ainsi P = Q est bien unique sous ces conditions.

Le polynome P est appelé le polynome minimal de u.

7e Application : déterminer le polynome minimal de l'endomorphisme u de la question 1.

On procède comme plus haut, on note \vec{e}_1, \vec{e}_2 et \vec{e}_3 les vecteurs de la base canonique et on calcule $u^3(\vec{e}_1)$.:

$$\begin{pmatrix} 0 & 0 & 6 \\ 1 & 0 & -11 \\ 0 & 1 & 6 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ -11 \\ 6 \end{pmatrix}$$

donc $u^3(\vec{e}_3) = 6\vec{e}_1 - 11\vec{e}_2 + 6\vec{e}_3$ et le polynome minimal de u est donc $P(X) = X^3 - 6X^2 + 11X - 6$.

Partie 3 : étude du commutant. Dans cette partie, u désigne toujours un endomorphisme cyclique de l'espace vectoriel E, avec E de dimension $n \ge 1$.

On fixe $\vec{x}_0 \in E$ tel que $E = Vect\left(u^k\left(\vec{x}_0\right)/k \in \mathbb{N}\right)$. On rappelle qu'alors, la famille $(\vec{x}_0, u\left(\vec{x}_0\right), \dots, u^{n-1}\left(\vec{x}_0\right))$ est une base de

8 Montrer que le commutant $C(u) = \{v \in \mathcal{L}(E) / u \circ v = v \circ u\}$ est un sous-espace vectoriel de $\mathcal{L}(E)$.

•
$$C(u) \subset \mathcal{L}(E)$$

- $0_{\mathcal{L}(E)} \in C(u)$ car $u \circ 0_{\mathcal{L}(E)} = 0_{\mathcal{L}(E)} \circ u = 0_{\mathcal{L}(E)}$.
- Soient $f, g \in C(u)$ et $\lambda, \mu \in \mathbb{R}$. On a par linéarité de u:

$$u \circ (\lambda f + \mu g) = \lambda u \circ f + \mu u \circ g = \lambda f \circ u + \mu g \circ u = (\lambda f + \mu g) \circ u$$

donc $\lambda f + \mu g \in C(u)$.

- Donc le commutant C(u) est un sous-espace vectoriel de $\mathcal{L}(E)$.
- **9** Notons $\mathbb{R}[u] = \{Q(u)/Q \in \mathbb{R}[X]\}$. Montrer que $\mathbb{R}[u] \subset C(u)$.

On a déjà de manière évidente que pour tout $k \in \mathbb{N}$, $u^k \in C(u)$. Comme de plus C(u) est un sous-espace vectoriel de $\mathcal{L}(E)$, les combinaisons linéaires de tels vecteurs sont aussi dans C(u). Ainsi pour tout $P \in \mathbb{R}[X]$, on a bien $P(u) \in C(u)$. D'où l'inclusion $\mathbb{R}[u] \subset C(u)$.

10a Soient deux endomorphismes v et w de C(u). Montrer que, si $v(\vec{x}_0) = w(\vec{x}_0)$, alors v = w. On a pour tout $k \in \mathbb{N}^*$:

$$v(u^k(\vec{x}_0)) = v \circ u^k(\vec{x}_0) = u^k \circ v(\vec{x}_0) = u^k \circ w(\vec{x}_0) = w(u^k(\vec{x}_0))$$

Ainsi v et w coïncident sur la base $(\vec{x}_0, u(\vec{x}_0), \dots, u^{n-1}(\vec{x}_0))$ Elles sont donc égales.

- **10b** Soit $v \in C(u)$.
- **10bi** Justifier l'existence de $(a_{0,\dots,}a_{-1}) \in \mathbb{R}^n$ tels que $v\left(\vec{x}_0\right) = a_{n-1}u^{n-1}\left(\vec{x}_0\right) + \dots + a_1u\left(\vec{x}_0\right) + a_0\vec{x}_0$. Comme $(\vec{x}_0, u\left(\vec{x}_0\right), \dots, u^{n-1}\left(\vec{x}_0\right))$ est une base de E, donc une famille génératrice de E, il existe bien $a_0, a_1, \dots, a_{n-1} \in \mathbb{R}$ tels que $v\left(\vec{x}_0\right) = a_{n-1}u^{n-1}\left(\vec{x}_0\right) + \dots + a_1u\left(\vec{x}_0\right) + a_0\vec{x}_0$.
- **10bii** Montrer que $v = a_{n-1}u^{n-1} + \dots + a_1u + a_0Id_E$.

Posons $w = a_{n-1}u^{n-1} + \dots + a_1u + a_0IdE$. On a clairement que w commute avec u (c'est un polynôme en u!). De plus on a $v(\vec{x}_0) = w(\vec{x}_0)$. Par la question précédente, on en déduit immédiatement que v = w.

11 Décrire C(u).

On a déjà que $\mathbb{R}[u] \subset C(u)$. Réciproquement, on vient de montrer que si $v \in C(u)$, alors $v \in \mathbb{R}[u]$.

On en déduit donc que $C(u) = \mathbb{R}[u]$.

12 Déterminer la dimension de C(u).

On sait déjà que la famille $(Id_E, u, ..., u^{n-1})$ est libre, et qu'il existe un unique polynôme P de degré n et unitaire tel que $P(u) = 0_{\mathcal{L}(E)}$ (c'est le polynôme minimal). On va montrer que $\mathbb{R}[u] = Vect(Id_E, u, ..., u^{n-1})$:

Prenons un élément de $\mathbb{R}[u]$, il est de la forme A(u) avec $A \in \mathbb{R}[X]$. On fait la division euclidienne de A par P: il existe $Q, R \in \mathbb{R}[X]$ tels que : A = QP + R et deg $(R) < \deg(P) = n$. On évalue en $u : A(u) = Q(u) \circ P(u) + R(u)$:

Or $P(u) = 0_{\mathcal{L}(E)}$, donc A(u) = R(u). Comme enfin $\deg(R) < n$, on en déduit que $R(u) \in Vect(Id_E, u, \dots, u^{n-1})$.

Finalement, on a bien que:

$$C(u) = \mathbb{R}[u] = \underset{19}{Vect} \left(Id_E, u, \dots, u^{n-1} \right) :$$

La famille $(Id_E, u, \ldots, u^{n-1})$ étant libre et génératrice de C(u), c'est donc une base de cet espace, et $\dim(C(u)) = n$.

Problème 2 : opérateur de différence. Dans ce problème, n désigne un entier naturel non nul et $\mathbb{R}_n[X]$ l'ensemble des polynomes à coefficients réels de degré au plus n.

Pour $k \in \mathbb{N}^*$, on note P_k le polynome X^{k-1} .

On rappelle que la famille $(P_k)_{k \in [[1,n+1]]}$ est une base de $\mathbb{R}_n[X]$ (c'est la base canonique de $\mathbb{R}_n[X]$). Pour $P \in \mathbb{R}_n[X]$ et non nul, on note c(P) son coefficient dominant.

Pour un ensemble E et une application $f: E \to E$, on définit f^k par récurrence sur $k \in \mathbb{N}$ par :

$$f^0 = Id_E \text{ et } f^{k+1} = f \circ f^k$$

Si V est une partie de E, on dit que V est stable par f si $f(V) \subset V$, i.e., si l'image de tout élément de V par f est dans V.

Partie 1 : l'opérateur de différence : L'opérateur de différence est l'application δ définie par :

$$\delta: \quad \mathbb{R}_n[X] \to \mathbb{R}_n[X]$$

 $P(X) \mapsto P(X+1) - P(X)$

0 Montrer que δ est un endomorphisme de $\mathbb{R}_n[X]$.

Soient $P, Q \in \mathbb{R}_n[X], \lambda, \mu \in \mathbb{R}$, on a:

$$\delta((\lambda P + \mu Q)(X)) = (\lambda P + \mu Q)(X + 1) - (\lambda P + \mu Q)(X)$$

$$= \lambda P(X + 1) + \mu Q(X + 1) - \lambda P(X) - \mu Q(X)$$

$$= \lambda \delta(P(X)) + \mu \delta(Q(X))$$

donc δ est linéaire. De plus,

$$\deg\left(P\left(X+1\right)-P\left(X\right)\right)\leq \max\left(\deg\left(P\left(X+1\right)\right),\deg\left(P\left(X\right)\right)\right)\leq \deg\left(P\left(X\right)\right)$$

donc d envoie $\mathbb{R}_n[X]$ dans $\mathbb{R}_n[X]$.

Donc δ est un endomorphisme de $\mathbb{R}_n[X]$.

1 Pour un polynôme non constant $P \in \mathbb{R}_n[X]$, exprimer $\deg(\delta(P))$ et $c(\delta(P))$ en fonction $\deg(P)$ et c(P).

On vient de justifier $\deg(\delta(P)) \leq \deg(P)$. Remarquons que P(X+1) et P(X) ont même degré et même coefficient dominant donc en réalité, $\deg(\delta(P)) \leq \deg(P) - 1$.

Notons $P = c(P)X^d + Q$ avec $\deg(Q) \le d - 1$. De même, $\deg(\delta(Q)) \le d - 2$.

Or $\delta(P) = c(P)\left((X+1)^d - X^d\right) + \delta(Q)$ et:

$$(X+1)^d - X^d = \sum_{k=0}^{d-1} \binom{d}{k} X^k = dX^{d-1} + \sum_{k=0}^{d-2} \binom{d}{k} X^k$$

donc deg $((X+1)^d - X^d) = d - 1 > deg(\delta(Q))$ donc :

$$deg(\delta(P)) = d - 1 = deg(P) - 1$$

$$c(\delta(P)) = c(P) d = c(P) deg(P)$$

2 En déduire le noyau ker (δ) et l'image Im (δ) de l'endomorphisme δ .

Donc si deg $(P) \geq 1$, alors deg $(\delta(P)) \geq 0$ donc $\delta(P) \notin \ker(\delta)$. Donc $\ker(\delta) \subset \mathbb{R}_0[X]$. L'inclusion inverse étant évidente, on a $\ker(\delta) = \mathbb{R}_0[X]$.

D'autre part, $\operatorname{Im}(\delta) \subset \mathbb{R}_{n-1}[X]$ car $\operatorname{deg}(\delta(P)) \leq \operatorname{deg}(P) - 1$ et grâce à la formule du rang, on a :

$$\dim (\operatorname{Im} \delta) = n + 1 - \dim (\ker (\delta)) = n = \dim (\mathbb{R}_n [X])$$

donc $\ker(\delta) = \mathbb{R}_{n-1}[X]$.

3 Plus généralement, pour $j \in [|1, n|]$, montrer les égalités suivantes :

$$\ker\left(\delta^{j}\right) = \mathbb{R}_{j-1}\left[X\right] \text{ et } \operatorname{Im}\left(\delta^{j}\right) = \mathbb{R}_{n-j}\left[X\right]$$
 (1)

On peut procéder par récurrence mais il faut être précis (récurrence sur j ? sur n ? portant sur quelle propriété ? avec un $\forall n$? un $\forall j$?...)

Pour cacher la récurrence, on a en toute généralité, pour δ endomorphisme de E: Im $(\delta^j) = \underbrace{\delta \circ \delta \circ \cdots \circ \delta}_{C}(E)$ (à détailler si pas évident). Donc :

$$\operatorname{Im}\left(\delta^{j}\right) = \underbrace{\delta \circ \delta \circ \cdots \circ \delta}_{j \text{ fois}}\left(\mathbb{R}_{n}\left[X\right]\right)$$

$$= \underbrace{\delta \circ \delta \circ \cdots \circ \delta}_{j-1 \text{ fois}}\left(\mathbb{R}_{n-1}\left[X\right]\right)$$

$$\vdots \text{ (en utilisant 2 pour } n-1, \ n-2, \ldots\right)$$

$$= \delta\left(\mathbb{R}_{n-j+1}\left[X\right]\right) = \mathbb{R}_{n-j}\left[X\right]$$

Ensuite, soit $P \in \mathbb{R}_{j-1}[X]$, comme deg $(\delta(P)) \le \deg(P) - 1$, en itérant, on a : deg $(\delta^j(P)) \le \deg(P) - j < 0$ donc $\delta^j(P) = 0_{\mathbb{R}[X]}$ donc $P \in \ker(\delta^j)$.

Donc $\mathbb{R}_{j-1}[X] \subset \ker(\delta^j)$.

Par la formule du rang, dim $\left(\ker\left(\delta^{j}\right)\right) = \dim\left(\mathbb{R}_{n}\left[X\right]\right) - \dim\left(\operatorname{Im}\left(\delta^{j}\right)\right) = n+1-\dim\left(\mathbb{R}_{n-j}\left[X\right]\right) = j = \dim\left(\mathbb{R}_{j-1}\left[X\right]\right) \operatorname{donc} \ker\left(\delta^{j}\right) = \mathbb{R}_{j-1}\left[X\right].$

4 On définit l'endomorphisme τ par $\tau = \delta + Id_{\mathbb{R}_n[X]}$. Pour $k \in \mathbb{N}$ et $P \in \mathbb{R}_n[X]$, exprimer $\delta^k(P)$ en fonction des $\tau^j(P)$ pour $j \in [0,k]$.

Soient $k \in \mathbb{N}$ et $P \in \mathbb{R}_n[X]$. On a $\tau \circ \left(-Id_{\mathbb{R}_n[X]}\right) = \left(-Id_{\mathbb{R}_n[X]}\right) \circ \delta = -\tau$ donc on peut appliquer le binôme de Newton :

$$\delta^{k}(P) = \left(\tau - Id_{\mathbb{R}_{n}[X]}\right)^{k}(P)$$

$$= \sum_{j=0}^{k} {k \choose j} \tau^{j} \circ \left(-Id_{\mathbb{R}_{n}[X]}\right)^{k-j}(P)$$

$$= \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} \tau^{j}(P)$$

5 Soit $P \in \mathbb{R}_{n-1}[X]$. Montrer que :

$$\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} P(j) = 0$$
 (2)

Pour $P \in \mathbb{R}_{n-1}[X]$, on a $\delta^n(P) = 0_{\mathbb{R}[X]}$ donc 4 donne pour $k = n : \sum_{j=0}^n (-1)^{n-j} \binom{n}{j} \tau^j(P) = 0_{\mathbb{R}[X]}$.

En particulier, la valeur en 0 est : $\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} \tau^{j} (P) (0) = 0.$

Or $\tau(P) = P(X+1) - P(X) + P(X) = P(X+1)$ donc en itérant : $\tau^{j}(P) = P(X+j)$ et $\tau^{j}(P)(0) = P(j)$ donc :

$$\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} P(j) = 0 \tag{2}$$

6 Dans cette question, on cherche tous les sous-espaces vectoriels de $\mathbb{R}_n[X]$ stables par l'application δ .

- 6a Pour P polynome non nul de degré $d \leq n$, montrer que la famille $(P, \delta(P), \delta^2(P), \dots, \delta^d(P))$ est libre. Justifier que le sous-espace vectoriel engendré par cette famille est stable par δ . D'après 1, les polynômes $P, \delta(P), \delta^2(P), \dots, \delta^d(P)$ sont respectivement de degrés $d, d-1, \dots, 1, 0$ donc la famille $(P, \delta(P), \delta^2(P), \dots, \delta^d(P))$ est une famille de polynômes de degrés échelonnés de 0 à d donc est libre et est une base de $\mathbb{R}_d[X]$. Ce sous-espace est stable par δ car si deg $(P) \leq d$, alors deg $(\delta(P)) \leq d-1$ donc $\delta(P) \in \mathbb{R}_d[X]$.
- 6b Montrer réciproquement que si V est un sous-espace vectoriel de $\mathbb{R}_n[X]$ stable par δ et non réduit à $\{0\}$, alors il existe un entier $d \in [|0,n|]$ tel que $V = \mathbb{R}_d[X]$. Soit V un sous-espace vectoriel de $\mathbb{R}_n[X]$ stable par δ et non réduit à $\{0\}$. Soit alors P un polynôme de V de degré maximal parmi les degrés des polynômes de V. Notons $d = \deg(P)$, $d \in [|0,n|]$ car $V \neq \{0\}$. V est stable par δ donc $P, \delta(P), \ldots, \delta^d(P) \in V$ et $V \subset Vect(P, \delta(P), \ldots, \delta^d(P))$. Or $P, \delta(P), \ldots, \delta^d(P)$ sont respectivement de degrés $d, d - 1, \ldots, 1, 0$ donc comme ci-dessus, $(P, \delta(P), \delta^2(P), \ldots, \delta^d(P))$ est une base de $\mathbb{R}_d[X]$. Donc $V \subset \mathbb{R}_d[X]$. La réciproque est claire par définition de P comme étant de plus grand degré parmi les polynômes de V. Donc $V = \mathbb{R}_d[X]$.

Partie 2 : étude d'une famille de polynomes : On considère la famille de polynomes :

$$\begin{cases} H_0 = 1 \\ H_k = \frac{1}{k!} \prod_{j=0}^{k-1} (X - j) \text{ pour } k \in [|1, n|] \end{cases}$$

7 Généralités:

7a Montrer que la famille $(H_k)_{k \in [[0,n]]}$ est une base de $\mathbb{R}_n[X]$. On a $\forall k \in [[0,n]]$, $\deg(H_k) = k$ donc $(H_k)_{k \in [[0,n]]}$ est une base de $\mathbb{R}_n[X]$ comme famille de polynômes de degrés échelonnés de 0 à n.

7b Calculer $\delta(H_0)$ et pour $k \in [|1, n|]$, exprimer $\delta(H_k)$ en fonction de H_{k-1} .

On a $\delta(H_0) = 0_{\mathbb{R}_n[X]}$ et pour $k \in [|1, n|]$:

$$\delta(H_k) = H_k(X+1) - H_k(X) = \frac{1}{k!} \prod_{j=0}^{k-1} (X+1-j) - \frac{1}{k!} \prod_{j=0}^{k-1} (X-j)$$

$$= \frac{1}{k!} \prod_{l=-1}^{k-2} (X-l) - \frac{1}{k!} \prod_{j=0}^{k-1} (X-j) = \frac{1}{k!} \prod_{j=0}^{k-2} (X-j) (X+1-X+k-1)$$

$$= \frac{k}{k!} \prod_{j=0}^{k-2} (X-j) = \frac{1}{(k-1)!} \prod_{j=0}^{k-2} (X-j) = H_{k-1}.$$

7c Montrer que pour $k, l \in [|0, n|]$:

$$\delta^{k}(H_{l})(0) = \begin{cases} 1 \text{ si } k = l \\ 0 \text{ si } k \neq l \end{cases}$$

Si $k \le l - 1$, on a en itérant 7b:

$$\delta^k \left(H_l \right) = H_{l-k}$$

donc:

$$\delta^{k}(H_{l})(0) = H_{l-k}(0) = 0$$

Donc:

$$\delta^{l}(H_{l}) = \delta\left(\delta^{l-1}(H_{l})\right) = \delta(H_{1}) = H_{0}$$

donc $\delta^{l}(H_{l})(0) = H_{0}(0) = 1$. Et pour $k \geq l + 1$, $\delta^{k}(H_{l}) = \delta^{k-l}(H_{0}) = 0_{\mathbb{R}_{n}[X]}$ car $k - l \geq 1$ donc $\delta^{k}(H_{l})(0) = 0$.

Ainsi:

$$\delta^{k}(H_{l})(0) = \begin{cases} 1 \text{ si } k = l \\ 0 \text{si } k \neq l \end{cases}$$

7d Montrer que pour tout $P \in \mathbb{R}_n[X]$:

$$P = \sum_{k=0}^{n} (\delta^{k}(P)) (0) H_{k}$$

On écrit $P \in \mathbb{R}_n[X]$ dans la base $(H_k)_{k \in [[0,n]]}$ de $\mathbb{R}_n[X]: P = \sum_{l=0}^n a_l H_l$.

On a alors pour tout $k \in [|0, n|]$, $\delta^{k}(P) = \sum_{l=0}^{n} a_{l} \delta^{k}(H_{l})$ donc $\delta^{k}(P)(0) = \sum_{l=0}^{n} a_{l} \delta^{k}(H_{l})(0) = a_{k}$ d'après 7c. Donc $P = \sum_{k=0}^{n} (\delta^{k}(P))(0) H_{k}$.

8 Polynomes à valeurs entières :

8a Soit $k \in \mathbb{Z}$. Calculer $H_n(k)$. On distinguera trois cas : $k \in [|0, n-1|]$, $k \geq n$ et k < 0. Pour ce dernier cas, on posera k = -p.

• Si
$$k \in [|0, n-1|]$$
, alors vu $H_n = \frac{1}{n!} \prod_{j=0}^{n-1} (X-j)$, on a $H_n(k) = 0$.

• Si
$$k \ge n$$
, alors $H_n(k) = \frac{1}{n!} \prod_{j=0}^{n-1} (k-j) = \frac{1}{n!} k(k-1) \cdots (k-n+1) = \frac{k!}{n! (k-n)!} = \binom{k}{n}$

• Si
$$k < 0$$
, on pose $k = -p$, $H_n(k) = \frac{1}{n!} \prod_{j=0}^{n-1} (-p-j) = \frac{(-1)^n}{n!} p(p+1) \cdots (p+n-1) = \frac{(-1)^n (n+p-1)!}{n! (p-1)!} = (-1)^n \binom{n+p-1}{n}.$

- 8b En déduire que $H_n(\mathbb{Z}) \subset \mathbb{Z}$ c'est-à dire que H_n est à valeurs entières sur les entiers. Les coeffcients binomiaux sont des entiers car ils se calculent tous par additions d'entiers par le triangle de Pascal. Donc $\forall k \in \mathbb{Z}, H_n(k) \in \mathbb{Z}$.
- 8c Soit $P \in \mathbb{R}_n[X]$ à valeurs entières sur les entiers. Montrer que $\delta(P)$ est aussi à valeurs entières sur les entiers. Soit $P \in \mathbb{R}_n[X]$ à valeurs entières sur les entiers. Soit $k \in \mathbb{Z}$. On a $\delta(P)(k) = P(k+1) P(k) \in \mathbb{Z}$ donc $\delta(P)$ est aussi à valeurs entières sur les entiers.
- 8d Montrer que $P \in \mathbb{R}_n[X]$ est à valeurs entières sur les entiers si et seulement si ses coordonnées dans la base $(H_k)_{k \in [|0,n|]}$ sont entières.

Si $P = \sum_{l=0}^{n} a_l H_l$ et si les a_l sont tous entiers alors pour tout $k \in \mathbb{Z}$, $P(k) = \sum_{l=0}^{n} a_l H_l(k) \in \mathbb{Z}$ comme somme et produit d'entiers. Donc P est à valeurs entières.

Réciproquement, si P est à valeurs entières, on a d'après 7d, $P = \sum_{k=0}^{n} (\delta^{k}(P))(0) H_{k}$ et $(\delta^{k}(P))(0) \in \mathbb{Z}$ d'après 8c. Donc les coordonnées de P dans la base $(H_{k})_{k \in [[0,n]]}$ sont entières.

8e Soit $P \in \mathbb{R}_n[X]$ de degré $d \in \mathbb{N}$. Montrer que si P est à valeurs entières sur les entiers, alors d!P est un polynôme à coefficients entiers. Etudier la réciproque.

Soit $P \in \mathbb{R}_n[X]$ de degré $d \in \mathbb{N}$. Alors $P = \sum_{k=0}^d (\delta^k(P))(0) H_k$ donc $d!P = \sum_{k=0}^d (\delta^k(P))(0) d!H_k$. Or pour $k \leq d$:

$$d!H_k = \frac{d!}{k!} \prod_{j=0}^{k-1} (X-j) = d(d-1) \cdots (k+1) \prod_{j=0}^{k-1} (X-j)$$

donc $d!H_k$ est un polynôme à coefficients entiers. Donc d!P est un polynôme à coefficients entiers.

La réciproque est fausse car si on prend par exemple, $P = \frac{1}{2}X^2$, alors d = 2 donc $d!P = X^2$ est à coefficients entiers mais P n'est pas à valeurs entières $(P(1) = \frac{1}{2})$.

Partie 3 : Généralisation de l'opérateur de différence et application : Pour une application $f: \mathbb{R}^{+*} \to \mathbb{R}$ de classe \mathcal{C}^{∞} , on définit l'application :

$$\delta(f): \quad \mathbb{R}^{+*} \to \mathbb{R}$$

$$x \mapsto f(x+1) - f(x)$$

9a Monter que $\delta(f)$ est de classe \mathcal{C}^{∞} sur \mathbb{R}^{+*} . Comparer $(\delta(f))'$ et $\delta(f')$. $\delta(f)$ est de classe \mathcal{C}^{∞} sur \mathbb{R}^{+*} comme somme et composée de fonctions de classe \mathcal{C}^{∞} sur \mathbb{R}^{+*} . Et :

$$\forall x \in \mathbb{R}, \ \left(\delta\left(f\right)\right)'\left(x\right) = f'\left(x+1\right) - f'\left(x\right) = \left(\delta\left(f'\right)\right)\left(x\right)$$

donc $(\delta(f))' = \delta(f')$.

9b Pour $n \in \mathbb{N}$ et x > 0, exprimer $(\delta^n(f))(x)$ à l'aide des coefficients binomiaux $\binom{n}{j}$ et des f(x+j) (où l'indice $j \in [[0,n]]$).

Soient $n \in \mathbb{N}$ et x > 0, de même qu'à la question 4, on a :

$$\delta^{n}\left(f\right) = \sum_{j=0}^{n} \left(-1\right)^{n-j} \binom{n}{j} \tau^{j}\left(f\right)$$

donc:

$$(\delta^{n}(f))(x) = \sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} f(x+j)$$

9c Expliquer pourquoi, pour tout x > 0, il existe $y_1 \in [0, 1]$ tel que :

$$\delta(f)(x) = f'(x + y_1)$$

Soit x > 0. f est continue sur [x, x + 1] et dérivable sur]x, x + 1[donc d'après l'égalité des accroissements finis, il existe $c \in]x, x + 1[$ tel que f(x + 1) - f(x) = (x + 1 - x) f'(c). On pose $y_1 = c - x$, alors $y_1 \in]0, 1[$ et $\delta(f)(x) = f'(x + y_1)$.

9d En déduire que pour tout x > 0, pour tout $n \in \mathbb{N}^*$, il existe un $y_n \in]0, n[$ tel que :

$$\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} f(x+j) = f^{(n)}(x+y_n)$$
 (*

On pourra procéder par récurrence sur $n \in \mathbb{N}^*$ et utiliser les trois questions précédentes. Montrons par récurrence sur $n \in \mathbb{N}^*$ la propriété : "pour toute fonction C^{∞} sur \mathbb{R}^{+*} et pour tout x > 0, il existe $y_n \in]0, n[$ tel que : $\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} f(x+j) = f^{(n)} (x+y_n)$ ".

- I.: n = 1, c'est la question 9c.
- H.: Soit $n \geq 1$ pour-lequel cette propriété est vérifiée. On applique cette propriété à $\delta(f)$: il existe $y_n \in]0, n[$ tel que : $\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} (\delta(f)) (x+j) = (\delta(f))^{(n)} (x+y_n)$. Or d'après 9a, $(\delta(f))^{(n)} = \delta(f^{(n)})$ donc avec aussi 9b il vient :

$$(\delta^{n}(\delta(f)))(x) = f^{(n)}(x + y_{n} + 1) - f^{(n)}(x + y_{n})$$

On applique l'égalité des accroissements finis à $f^{(n)}$ entre $f^{(n)}(x+y_n)$ et $f^{(n)}(x+y_n+1)$: il existe $c_n \in]x+y_n, x+y_n+1[$ tel que :

$$\left(\delta^{n+1}\left(\mathbf{f}\right)\right)(x) = f^{(n+1)}\left(c_n\right)$$

On pose $y_{n+1}=c_n-x,$ alors $y_{n+1}\in]y_n,y_n+1[\ \subset\]0,n+1[$ et avec 9b on a :

$$\sum_{j=0}^{n+1} (-1)^{n+1-j} {n+1 \choose j} f(x+j) = f^{(n+1)} (x+y_{n+1})$$

- Donc la propriété est vraie pour tout $n \in \mathbb{N}^*$.
- 10 On considère dans toute la suite de cette partie un réel α . On suppose que pour tout entier p, si p est premier, alors p^{α} est un entier naturel. On se propose de montrer que α est alors un entier naturel.
- **10a** Montrer que pour tout entier k strictement positif, $k^{\alpha} \in \mathbb{N}^*$. k admet une décomposition en produit de facteurs premiers du type $k = p_1^{v_1} \cdots p_s^{v_s}$ où les p_i sont premiers et les $v_i \in \mathbb{N}$. On a :

$$k^{\alpha} = (p_1^{v_1} \cdots p_s^{v_s})^{\alpha} = (p_1^{\alpha})^{v_1} \cdots (p_s^{\alpha})^{v_s}$$

Or on a supposé que tous les p_i^{α} sont entiers naturels donc k^{α} est entier naturel comme produit d'entiers naturels.

- 10b Montrer que α est positif ou nul. Supposons $\alpha < 0$. Alors pour p premier, $p^{\alpha} = e^{\alpha \ln(p)} \in]0,1[$ ne peut être un entier naturel, ce qui contrdit l'hypothèse. Donc $\alpha \geq 0$.
- 10c On considère l'application f_{α} définie sur \mathbb{R}^{+*} par $f_{\alpha}(x) = x^{\alpha}$. Montrer que α est un entier naturel si et seulement si l'une des dérivées successives de f_{α} s'annule en au moins un réel strictement positif. Si $\alpha \in \mathbb{N}$, alors $(f_{\alpha})^{(\alpha+1)} = 0$ donc est nulle en tout réel strictement positif, ce qui est suffisant. Réciproquement, si $\alpha \notin \mathbb{N}$, pour tout $n \in \mathbb{N}$, la dérivée n-ième de f_{α} est :

$$\forall x > 0, (f_{\alpha})^{(n)}(x) = \alpha (\alpha - 1) \cdots (\alpha - n + 1) x^{\alpha - n} \neq 0$$

car tous les facteurs sont non nuls. Donc par contraposée, si l'une des dérivées successives de f_{α} s'annule en au moins un réel strictement positif, alors $\alpha \in \mathbb{N}$.

- 11 On applique la relation (*) à la fonction f_{α} et à l'entier $n = \lfloor \alpha \rfloor + 1$ (où $\lfloor . \rfloor$ désigne la partie entière). On choisit désormais $x \in \mathbb{N}^*$.
- 11a Montrer que l'expression

$$\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} f_{\alpha} (x+j)$$

est un entier relatif.

Pour tout $j \in [[0, n]]$, $f_{\alpha}(x + j) = (x + j)^{\alpha} \in \mathbb{N}$ d'après 10a et car $x \in \mathbb{N}$. Donc $\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} f_{\alpha}(x + j)$ est un entier relatif comme somme et différence d'entiers.

11b Les notations sont celles de la question 9d. Quelle est la limite de l'expression $f_{\alpha}^{(n)}(x+y_n)$ quand $x \in \mathbb{N}^*$ tend vers $+\infty$?

D'après 9b, il existe
$$y_n \in]0, n[$$
 tel que $\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} f_{\alpha}(x+j) = f_{\alpha}^{(n)}(x+y_n)$.

Rappelons que $(f_{\alpha})^{(n)}(x+y_n) = \alpha(\alpha-1)\cdots(\alpha-n+1)(x+y_n)^{\alpha-n}$ et que $n=\lfloor\alpha\rfloor+1$ et $|\alpha| \le \alpha < |\alpha| + 1 \text{ donc } \alpha - n < 0.$

Attention pour conclure à ne pas oublier que
$$y_n$$
 dépend de x .
Mais $y_n \in]0, n[$ donc $0 \le (x + y_n)^{\alpha - n} \le x^{\alpha - n}$ et $\lim_{\substack{x \to +\infty \\ x \in \mathbb{N}}} x^{\alpha - n} = 0$ donc $\lim_{\substack{x \to +\infty \\ x \in \mathbb{N}}} (x + y_n)^{\alpha - n} = 0$

donc
$$\lim_{\substack{x \to +\infty \\ x \in \mathbb{N}}} f_{\alpha}^{(n)}(x + y_n) = 0.$$

11c Conclure.

 $\sum_{i=0}^{n} (-1)^{n-j} \binom{n}{j} f_{\alpha}(x+j) \text{ est donc un entier qui tend vers } 0 \text{ quand } x \in \mathbb{N}^* \text{ tend vers } +\infty,$ donc pour x suffisamment grand, il est nul. (facile en utilisant la quantification de la limite et $\varepsilon = \frac{1}{2}$ par exemple).

Mais $\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} f_{\alpha}(x+j) = f_{\alpha}^{(n)}(x+y_n)$ donc c'est l'une des dérivées de f_{α} qui s'annule pour x suffisamment grand. Donc d'après 10c, $\alpha \in \mathbb{N}$.