Programme de colles, semaines 3 et 4.

Chapitre 3 : Trigonométrie - formules lues sur le cercle trigonométrique : $\cos(\pi - x) = \dots$

- Pour *n* entier naturel non nul, on pose $S = \sum_{k=0}^{2n} \cos\left(\frac{k\pi}{2n}\right)$. Grâce à un changement d'indice, montrer que S=0. Conclure. Indication : faire un dessin pour comprendre pourquoi les termes se simplifient.
- Pour *n* entier naturel non nul, calculer la somme $S = \sum_{k=0}^{2n} 2^k \cos\left(\frac{k\pi}{2}\right)$ en séparant les termes de la somme suivant la parité de k.
 - formules d'addition, de duplication, de linéarisation.
 - Résoudre l'équation $2\cos^2(\theta) 3\cos(\theta) + 1 = 0$.
 - interprétation géométrique de tan(x).
 - Soit $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ tel que $\sin(x) = -\frac{1}{5}$. Que vaut $\tan(x)$?
 - $-\tan(a+b)$, $\tan(a-b)$, $\tan(2a)$
 - Graphe précis des fonctions sin, cos et tan, et dérivée de tan (2 formes).
 - Résoudre l'équation $\sin(x) + \sin(2x) + \sin(3x) = 0$.
 - Equation $\tan(x)\tan(2x) = 1$.

Chapitre 4 : Nombres complexes - Inégalités triangulaires

- Cas d'égalité dans l'inégalité triangulaire.
- formules d'Euler
- formule de Moivre
- Résolution de $e^z=1$. Calcul de $C=\sum_{k=0}^n\cos\left(k\theta\right)$
- Calcul de $C = \sum_{k=0}^{n} {n \choose k} \cos(k\theta)$
- Linéariser cos⁵ (t
- Transformation $a\cos(t) + b\sin(t)$, à démontrer (une des deux méthodes, au choix).
- résolution des équations $e^z = a$
- racines carrées de $\omega = 3 + 4i$
- Equations du second degré à coefficients complexes, énoncé complet avec la factorisation du trinôme et les relations coefficients-racines
 - Trouver les racines de l'équation $z^2 + 2z i = 0$.
 - Résolution de $z^n = 1$ (énoncé du résultat théorème 45 et démonstration)
 - Somme des racines n i emes de l'unité.
 - Calculer le produit des racines n i emble mes de l'unité (exercice 50)
 - Résoudre l'équation $z^6 = 8i$.
 - Soit $n \in \mathbb{N}, n \geq 2$. Résoudre l'équation: $(z+i)^n (z-i)^n = 0$
 - conditions d'alignement et d'orthogonalité : énoncés.
- Déterminer les points M(z) du plan complexe tels que les points A(i), M(z), N(iz) soient alignés.
- Exercice : Soit A, B, C trois points d'affixes respectives a, b, c. Déterminer les racines de l'équation: $z^2 - z + 1 = 0$ $(z \in \mathbb{C})$ sous forme trigonométrique. En déduire que le triangle ABC est équilatéral si et seulement si

$$a^2 + b^2 + c^2 = ab + ac + bc$$

 $a^2+b^2+c^2=ab+ac+bc$ - Déterminer le module et un argument de. $z=(1+j)^{2n}$ où $j=e^{2i\pi/3}$