Programme de colles, semaines 7 et 8.

Chapitre 7 : Calculs de primitives

$$1.) \int \frac{\sinh(x)}{\cosh^3(x)} dx =$$

2.) Soit
$$a > 0$$
. $\int \frac{dx}{x^2 - a^2} =$

3.)
$$\int_0^{\pi/2} \cos(x) \sqrt{1 + \sin(x)} dx = 4$$
.)
$$I = \int_0^1 \arctan(t) dt = 5$$
.)
$$I = \int_0^1 \sqrt{1 - u^2} du = 6$$

4.)
$$I = \int_0^1 \arctan(t) dt =$$

5.)
$$I = \int_0^1 \sqrt{1 - u^2} du =$$

6.)
$$I = \int_0^{\pi/2} \sin^2(t) dt$$

6.)
$$I = \int_0^{\pi/2} \sin^2(t) dt$$

7.) $I = \int_0^1 \frac{dx}{\cosh(x)} = \int_0^1 \frac{2e^x}{e^{2x} + 1} dx = \int_0^1 \frac{2e^x}{e^{2x} + 1} dx$

- Exo : calculer une primitive de
$$f(x) = e^{\lambda x} \cos(x)$$
, $(\lambda \in \mathbb{R})$.

-
$$\int \tan(x) dx$$
.

-
$$\int \arctan(t) dt$$
, puis de $\int \ln(x) dx$

-
$$\int t^2 e^t dt$$
, $\int \arcsin(x) dx$

- Changements de variables : calculs de
$$\int_0^1 \sqrt{1-u^2} du$$
, $\int_0^x e^{-\sqrt{t}} dt$ pour $x \ge 0$

-
$$I = \int_0^{\pi/2} \frac{\sin(t)}{\sin(t) + \cos(t)} dt$$
: transformer I avec un changement de variables puis calculer $2I$
- $I = \int_0^1 \frac{dx}{\cosh(x)} = \int_0^1 \frac{2e^x}{e^{2x} + 1} dx = ?$

$$-I = \int_0^1 \frac{dx}{\cosh(x)} = \int_0^1 \frac{2e^x}{e^{2x} + 1} dx = 0$$

$$-I = \int_0^{\pi/4} \ln(1 + \tan(x)) dx$$
 (poser $t = \pi/4 - x$).

- Calculs de primitives par changement de variables :
$$\int \frac{e^t dt}{\sqrt{1+e^t}}$$

$$-\int^x \frac{dt}{(t-a)^2 + b} = ?$$

$$-\int_{a}^{x} \frac{t^3}{t-1} dt = ?$$

$$-\int \frac{d\tilde{t}}{t^2+t+1} = ?$$

- Calcul de
$$\int_c^x \frac{3t-5}{t^2-2t-3} dt$$
.

- Calcul de
$$\int_c^x \frac{4t}{t^2 + 2t + 5} dt$$

- Calcul de
$$\int_{c}^{x} \frac{4t}{t^2 + 2t + 5} dt.$$
- Calcul de
$$\int_{c}^{x} \frac{4t + 2}{(t - 2)^2} dt.$$

Equations différentielles : - Résoudre (E_0) : $y' + t(t^2 + 1)y = 0$.

- Résoudre
$$(E_0): y' - \frac{2}{x}y = 0 \text{ sur } \mathbb{R}^{+*}.$$

- Résoudre
$$(E_0): y' + \frac{x}{1+x^2}y = 0.$$

- Résoudre
$$(E): y' + 2ty = t^2e^{-t^2}$$
.

- Résoudre $(E): y' + \frac{1}{x}y = \frac{x}{x-1}$ sur $]1, +\infty[$ L'équation régissant la charge q aux bornes d'un condensateur dans un circuit RC auquel on impose une tension constante U est (E): $\frac{q(t)}{C} + R\frac{dq}{dt} = U$. Résoudre (E).

 - Enoncé du théorème sur les solutions à valeurs réelles de l'équation sans second membre.
- Résoudre $y'' + \omega^2 y = 0$, $\omega \in \mathbb{R}^{+*}$.
 - Idem solutions à valeurs complexes.
 - Résoudre : (E_1) : $y'' 5y' + 6y = x^2 + 1$
 - Résoudre (E) : $y'' 4y' + 3y = e^x$
 - Résoudre (E): $y'' 4y' + 3y = \sinh(x)$.
 - Résoudre $(E): y'' + y = \sin^3(x)$.
 - Résoudre $(E): y'' 4y' + 3y = \sin(x) + \cos(x)$
- Sous quelle forme chercher une solution particulière lorsque le second membre est exponentiel et à quelles conditions cela s'applique-t-il (i.e. pour quelles équations?)? et lorsqu'il est sinusoïdal? Et qu'appelle-t-on au juste un second membre exponentiel? sinusoïdal?