Programme de colles, semaines 9 et 10.

Chapitre 8 : Arithmétique

- Enoncé de la division euclidienne dans N.
- Montrer qu'il existe une infinité de nombres premiers
- Enoncé du théorème de décomposition d'une entier en produit de facteurs premiers. Démonstration de l'existence.
- Définition du pgcd et du ppcm de deux entiers. Calcul du pgcd et du ppcm de deux entiers décomposés en produit de facteurs premiers.

Chapitre 8 : Nombres réels et suites numériques - Propriété fondamentale de \mathbb{R} (théorème 24 du poly) et le corollaire (sans dém).

- Définition et caractérisation de la partie entière d'un réel.
- Etudier la monotonie de (u_n) définie par $u_n = \sum_{k=1}^n \frac{1}{n+k}$
- Définition d'une suite de limite $l \in \mathbb{R}$ et d'une suite de limite $+\infty$.
- Démonstration du théorème d'unicité de la limite.
- Toute suite convergente est bornée : dém.
- limite de la somme de deux suites convergentes : dém.
- limite du produit de deux suites convergentes : dém.
- théorème de passage à la limite (th. 60), énoncé complété des remarques qui suivent le théorème.
 - Etude de la suite récurrente $u_{n+1}=\sqrt{1+u_n}$ (exo 58) (ne demander qu'une partie de l'étude)
 - toute suite extraite de (u_n) a même limite que (u_n) : dém. dans le cas (u_n) convergente.
 - $u_n = \sin\left(\frac{2n+1}{3}\pi\right)$. Montrer que (u_n) n'a pas de limite.
- suites arithmético-géométriques : savoir trouver u_n en fonction de n sur un exemple (exo 70 ou semblable). Exercice : $u_{n+1} = \frac{\sqrt{u_n}}{e}$ et $u_0 = .$ Exprimer u_n en fonction de n.
 - suites récurrentes linéaires d'ordre 2 : énoncé du th. (prop 72)
 - application à $u_{n+2} = 2u_n u_{n+1}$, et à $2(v_{n+1} v_{n+2}) = v_n$: donner u_n et v_n en fonction de n.
 - énoncé du théorème d'encadrement
 - exercice : $u_n = \sum_{k=1}^n \frac{n}{n^2 + k}$. Etudier la limite de (u_n) .
- théorème de la limite monotone : énoncé. Démonstration dans le cas (u_n) croissante non majorée.
 - déf. des suites adjacentes, énoncé du théorème sur les suites adjacentes.

- Exercice: Soient $u_n = \sin\left(\left(2 - \sqrt{3}\right)^n \pi\right)$ et $v_n = \sin\left(\left(2 + \sqrt{3}\right)^n \pi\right)$. Montrer que pour tout $n \in \mathbb{N}$, $u_n \ge 0$ et étudier sa limite quand n tend vers $+\infty$. Soit $A_n = \left(2 - \sqrt{3}\right)^n + \left(2 + \sqrt{3}\right)^n$, montrer que A_n est entier et en déduire la limite de la suite (v_n) .

Soit
$$S_n = \sum_{k=0}^n u_k$$
.

Montrer que la suite (S_n) est croissante.

Montrer que pour tout $n \in \mathbb{N}$, $S_n \leq \sum_{k=0}^{n} (2 - \sqrt{3})^k \pi$.

Montrer que (S_n) est convergente.

- Exercice : On définit la suite $(u_n)_{n\in\mathbb{N}}$ par les relations suivantes:

$$u_0 = \frac{1}{2} \text{ et } \forall n \in \mathbb{N}, \ u_{n+1} = \frac{1}{2}(u_n^2 + u_n).$$

Montrer que $\forall n \in \mathbb{N}, u_n \in \left[0, \frac{1}{2}\right]$.

Etudier le sens de variation de la suite (u_n) . Que peut-on en déduire?

Montrer que $\forall n \in \mathbb{N}, u_{n+1} \leq \frac{3}{4}u_n$. En déduire la limite de la suite (u_n) .

- Exercice : Soit
$$u_n = \sum_{k=0}^n \frac{(-1)^k}{k+1}$$
.

On pose $v_n = u_{2n}$ et $w_n = u_{2n+1}$. Montrer que les suites (v_n) et (w_n) sont adjacentes. Que peut-on en déduire pour la suite (u_n) ?