Colle n°7

Semaine du 10/11/2025

Ce que le programme contient :

ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES D'ORDRE 1

Objet d'étude :

$$y' + ay = b \operatorname{sur} I$$

avec $a,b:I\to\mathbb{K}$ des fonctions continues, $y:I\to\mathbb{K}$ l'inconnue, supposée dérivable, I un intervalle de \mathbb{R} et $\mathbb{K}=\mathbb{R}$ ou \mathbb{C} .

- ⋆ Vocabulaire des équations différentielles : forme résolue, linéaire, second membre, équation homogène associée.
- * Structure des solutions pour une équation différentielle linéaire : si y_p est une solution particulière et S_h l'ensemble des solutions de l'équation homogène associée, $S = \{y_p + y_h ; y_h \in S_h\}$.
- * À l'ordre 1, détermination de S_h à l'aide d'une primitive de a.
- * Recherche d'une solution particulière : recherche sous forme particulière (second terme constant, polynomial, exponentiel ou sinusoïdal; sans chercher trop de raffinement) ou plus systématique **méthode de la variation de la constante**. Principe de superposition en cas de second membre ad hoc.
- * Conclusion : l'ensemble des solutions est une droite affine, mise en forme précise du résultat.
- * Application à la résolution d'un problème de Cauchy (détermination de la constante à l'aide de la donnée initiale). Existence et unicité d'une solution pour tout problème de Cauchy linéaire d'ordre 1, interprétation graphique.

ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES D'ORDRE 2

Objet d'étude:

$$y'' + ay' + by = f \operatorname{sur} I$$

avec $f:I\to\mathbb{K}$ une fonction continue, a et b dans $\mathbb{K},$ $y:I\to\mathbb{K}$ l'inconnue, supposée deux fois dérivable, I un intervalle de \mathbb{R} et $\mathbb{K}=\mathbb{R}$ ou \mathbb{C} .

- \star Équation caractéristique associée, forme de l'ensemble des solutions de l'équation homogène associée, à valeurs dans $\mathbb R$ ou $\mathbb C$, selon le discriminant de l'équation caractéristique.
- * Recherche d'une solution particulière seulement pour des seconds membres particuliers : polynomial, exponentiel ou sinusoïdal (ou éventuellement produit d'un polynôme et d'une exponentielle). Principe de superposition.
- * Application à la résolution d'un problème de Cauchy (détermination des constantes à l'aide des données initiales). Existence et unicité d'une solution pour tout problème de Cauchy linéaire d'ordre 2 à coefficients constants.

Ce que le programme ne contient pas :

- \star des équations différentielles à valeurs vectorielles,
- * des équations différentielles non linéaires (sauf si on peut les ramener à une équation linéaire...)

Questions de cours possibles.

- ★ Ensemble des solutions d'une équation linéaire homogène d'ordre 1 (avec démonstration).
- * Exemple : résolution de $y' + ty = t^3$ sur \mathbb{R} . Interprétation graphique de l'unicité au problème de Cauchy.
- ★ Ensemble des solutions d'une équation linéaire homogène d'ordre 2 à coefficients constants, dont l'équation caractéristique a un discriminant nul.
- * Pour une équation différentielle linéaire d'ordre 2) coefficients constants, montrer que si le second membre est de la forme $t\mapsto \exp(\beta t)$ avec β une solution simple de l'équation caractéristique, alors il existe une solution particulière de la forme $t\mapsto kt\exp(\beta t)$ avec $k\in\mathbb{C}$.