Colle n°8

Semaine du 17/11/2025

Ce que le programme contient :

À partir de mercredi, la colle pourra intégrer la résolution d'un système linéaire pas trop gros ni sophistiqué, avec l'algorithme du pivot de Gauss.

ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES D'ORDRE 2 À COEFFICIENTS CONSTANTS Objet d'étude :

$$y'' + ay' + by = f \operatorname{sur} I$$

avec $f:I\to\mathbb{K}$ une fonction continue, a et b dans $\mathbb{K},$ $y:I\to\mathbb{K}$ l'inconnue, supposée deux fois dérivable, I un intervalle de \mathbb{R} et $\mathbb{K}=\mathbb{R}$ ou \mathbb{C} .

- \star Équation caractéristique associée, forme de l'ensemble des solutions de l'équation homogène associée, à valeurs dans \mathbb{R} ou \mathbb{C} , selon le discriminant de l'équation caractéristique.
- * Recherche d'une solution particulière seulement pour des seconds membres particuliers : polynomial, exponentiel ou sinusoïdal (ou éventuellement produit d'un polynôme et d'une exponentielle). Principe de superposition.
- * Application à la résolution d'un problème de Cauchy (détermination des constantes à l'aide des données initiales). Existence et unicité d'une solution pour tout problème de Cauchy linéaire d'ordre 2 à coefficients constants.

ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES D'ORDRE 1

Si le temps le permet, la plupart des élèves en ayant déjà eu en semaine 6.

Ce que le programme ne contient pas :

- * des équations différentielles à valeurs vectorielles,
- ★ des équations différentielles non linéaires ou d'ordre 2 à coefficients non constants (sauf si on peut les ramener à un cas du cours par une transformation...)
- * des problèmes de recollement (on en fera un peu plus tard!)

Questions de cours possibles.

- * Déterminer les bornes supérieure et inférieure de $\{\frac{1}{n}; n \in \mathbb{N}^*\}$.
- $\star\,$ Définition de la convergence d'une suite vers une limite finie + dessin.
- ★ Ensemble des solutions d'une équation linéaire homogène d'ordre 2 à coefficients constants, dont l'équation caractéristique a un discriminant nul (avec démonstration).
- * Pour une équation différentielle linéaire d'ordre 2 à coefficients constants, montrer que si le second membre est de la forme $t \mapsto \exp(\beta t)$ avec β une solution simple de l'équation caractéristique, alors il existe une solution particulière de la forme $t \mapsto kt \exp(\beta t)$ avec $k \in \mathbb{C}$.