Colle 1 : quinzaine du 14 au 27 septembre

Ensembles : différents modes d'écriture des ensembles.

Inégalités : Relation d'ordre sur \mathbb{R} . Compatibilité avec les opérations. Intervalles de \mathbb{R} . Valeur absolue. Inégalité triangulaire. Parties majorées, minorées, bornées. Majorant, minorant ; maximum, minimum d'une partie de \mathbb{R} .

Trigonométrie : cercle trigonométrique. Paramétrisation par cosinus et sinus. Relation de congruence modulo 2π sur \mathbb{R} . Symétries de cosinus et sinus. Cosinus et sinus des angles usuels. Formules d'additions et de duplication. Fonctions circulaires cosinus et sinus. Pour $x \in \mathbb{R}$, inégalité $|\sin(x)| \leq |x|$.

Fonction tangente. Tangente de $\pi \pm x$. Tangente des angles usuels. Formule d'addition.

Questions de cours :

- 1. Soit a, b, c, d des réels. Si $a \le b$ et $c \le d$, comparer a + c et b + d, ainsi que ac et bd lorsque a et c sont positifs.
- 2. Énoncer les deux inégalités triangulaires et le cas d'égalité pour la première.
- 3. Définir la notion de partie de $\mathbb R$ majorée, minorée, bornée.
- 4. Définir la notion de maximum d'une partie de \mathbb{R} non vide.
- 5. Énoncer la caractérisation des parties bornées à l'aide de la valeur absolue.
- 6. Définir la notion de congruence modulo a, où a est un réel strictement positif.
- 7. Exprimer en fonction de $\cos(x)$ et $\sin(x)$ les cosinus et sinus de $\pi \pm x$ et de $\frac{\pi}{2} \pm x$.
- 8. Tout ou partie du formulaire de trigonométrie.
- 9. Fonction tangente : définition, domaine de définition, expressions de la dérivée, représentation graphique.

Savoir-faire

- 1. Un encadrement des réels a et b étant donnés, encadrer des quantités comme $a \pm b$, ab, $\frac{a}{b}$ si possible.
- 2. Montrer que [0; 1[n'a pas de maximum.
- 3. Un encadrement du nombre réel a et une des trois valeurs $\cos(a)$, $\sin(a)$ ou $\tan(a)$ étant donnée, déterminer les deux autres.
- 4. Résoudre une équation du type $\cos(x) = \pm \cos(a)$, $\cos(x) = \pm \sin(a)$, $\sin(x) = \pm \sin(a)$, $\tan(x) = \pm \tan(a)$.
- 5. À l'aide du cercle trigonométrique, résoudre une inéquation du type $\cos(x) \ge \cos(a)$, $\sin(x) \ge \sin(a)$, $\tan(x) \ge \tan(a)$ ou analogue. On donnera les solutions sur \mathbb{R} ou sur un intervalle (autre que $[0; 2\pi]$), au choix du colleur.
- 6. Transformer une expression du type $a\cos(x) + b\sin(x)$ en une expression du type $A\cos(x-\varphi)$.