Colle 3: semaines du 14 au 20 octobre et du 4 au 10 novembre

Sommes et produits : notation, manipulations élémentaires. Somme des n premiers entiers, somme des termes d'une suite arithmétique, somme des termes d'une suite géométrique, somme des carrés des n premiers entiers. Changement d'indices. Sommes télélescopiques. Sommes doubles.

Coefficients binomiaux, formule du triangle de Pascal, formule du binôme de Newton, et factorisation de $a^n - b^n$.

Nombres complexes : Parties réelle et imaginaire. Conjugaison. Module. Inégalités triangulaires. Complexes de module 1. Notation $e^{i\theta}$. Formules d'Euler et De Moivre. Factorisation de $e^{i\theta} \pm 1$ et de $e^{i\theta} \pm e^{i\alpha}$. Linéarisation. Transformation de $\cos(kx)$ et $\sin(kx)$ en un polynôme en $\cos(x)$ et $\sin(x)$. Argument d'un nombre complexe non nul. Écriture trigonométrique.

Questions de cours :

- 1. Donner la définition des coefficients binomiaux. Énoncer la formule du triangle de Pascal.
- 2. Énoncer la formule du binôme de Newton.
- 3. Pour $n \in \mathbb{N}$ et $a, b \in \mathbb{C}$, énoncer la formule de factorisation de $a^n b^n$. Factoriser $a^3 b^3$ et $a^3 + b^3$.
- 4. Pour $n \in \mathbb{N}$, donner la valeur des sommes usuelles $\sum_{k=1}^{n} k, \sum_{k=1}^{n} k^2$.
- 5. Pour $n \in \mathbb{N}$ et $a \in \mathbb{C}$, donner la valeur de $\sum_{k=0}^{n} a^k$.
- 6. Donner la définition du module, du conjugué et d'un argument d'un complexe non nul.
- 7. Énoncer la première inégalité triangulaire et le cas d'égalité. Énoncer la deuxième inégalité triangulaire.
- 8. Pour $z \in \mathbb{C}$, exprimer Re(z), Im(z) et |z| en fonction de z et \overline{z} .
- 9. Définir $e^{i\theta}$ pour $\theta \in \mathbb{R}$. Énoncer les formules d'Euler et la formule de De Moivre.
- 10. À quelles conditions nécessaires et suffisantes deux complexes donnés sous forme algébrique sont-ils égaux ? et pour deux complexes non nuls donnés sous forme trigonométrique ?
- 11. Énoncer trois caractérisations (une portant sur la forme algébrique, une autre sur le conjugué, et une sur les arguments) pour qu'un complexe soit réel (respectivement imaginaire pur).

Savoir-faire

- 1. Réindexer une somme.
- 2. Écrire un nombre complexe sous forme algébrique ou sous forme exponentielle.
- 3. Mettre en œuvre la technique de l'angle moitié pour déterminer une forme trigonométrique d'un nombre complexe s'exprimant sous la forme $e^{ia} \pm e^{ib}$.

Exemple : Déterminer une forme trigonométrique du nombre complexe $z=1+e^{-i\frac{3\pi}{7}}$, puis une forme trigonométrique du nombre complexe $w=e^{i\frac{\pi}{5}}-e^{i\frac{2\pi}{3}}$.

- 4. Linéariser un produit d'expressions trigonométriques.
- 5. Déterminer une expression de $\cos(nx)$ ou $\sin(nx)$ à l'aide de $\cos(x)$ et $\sin(x)$.

Exemple : Soit $x \in \mathbb{R}$. Exprimer $\cos(5x)$ en fonction de $\cos(x)$ et $\sin(x)$.

6. Soit $n \in \mathbb{N}$. Soit $t \in \mathbb{R}$. Calculer

$$\sum_{k=0}^{n} \cos(kt) \text{ et } \sum_{k=0}^{n} \sin(kt).$$

7. Pour $k, n \in \mathbb{N}^*$ avec $1 \leq k \leq n$, montrer que $k \binom{n}{k} = n \binom{n-1}{k-1}$, et calculer $\sum_{k=1}^{n} k \binom{n}{k}$.