Devoir n°1 (non surveillé)

EXERCICE 1

Simplifier au maximum les expressions suivantes sans utiliser la calculatrice :

$$\frac{1+\frac{1}{2}+\frac{1}{3}}{\frac{1}{4}+\frac{1}{5}+\frac{1}{6}}; \ 2^{12}9^{5}12^{-6}; \ \frac{(4-3\sqrt{5})(1+\sqrt{5})}{2+\sqrt{5}}; \ \ln 72 + \ln \frac{1}{12} - \ln 3.$$

EXERCICE 2

Résoudre dans $\mathbb R$ les équations suivantes :

$$\frac{1}{x} - \frac{1}{x+1} = \frac{1}{x+2} \; ; \; \sqrt{x+1} - \sqrt{x} = \frac{1}{2} \; ; \; \ln(x+1) - \ln x = 1.$$

EXERCICE 3

Pour tout $n \in \mathbb{N}^*$ on pose $S_n = \frac{1}{1^2} + \frac{1}{2^2} + \ldots + \frac{1}{n^2}$.

- 1) Montrer que : $\forall n \in \mathbb{N}^*, S_n \leq 2 \frac{1}{n}$.
- 2) En déduire que la suite de terme général S_n est convergente.

EXERCICE 4

On considère la parabole \mathcal{P} d'équation $y=x^2$. Soient x_1 et x_2 deux réels distincts et soient M_1 , M_2 et M les points de \mathcal{P} d'abscisses respectives x_1 , x_2 et $\frac{x_1+x_2}{2}$. Montrer que la tangente à \mathcal{P} en M est parallèle à la droite (M_1M_2) .

EXERCICE 5

Déterminer les réels a pour lesquels l'équation $x^3 - 3x^2 - 24x + a = 0$ a exactement deux solutions réelles distinctes. On pourra faire une étude de fonction.

Devoir n°1 (non surveillé)

EXERCICE 1

Simplifier au maximum les expressions suivantes sans utiliser la calculatrice :

$$\frac{1+\frac{1}{2}+\frac{1}{3}}{\frac{1}{4}+\frac{1}{5}+\frac{1}{6}} \; ; \; \; 2^{12}9^512^{-6} \; ; \; \; \frac{(4-3\sqrt{5})(1+\sqrt{5})}{2+\sqrt{5}} \; ; \; \; \ln 72 + \ln \frac{1}{12} - \ln 3.$$

EXERCICE 2

Résoudre dans $\mathbb R$ les équations suivantes :

$$\frac{1}{x} - \frac{1}{x+1} = \frac{1}{x+2} \; ; \; \sqrt{x+1} - \sqrt{x} = \frac{1}{2} \; ; \; \ln(x+1) - \ln x = 1.$$

EXERCICE 3

Pour tout $n \in \mathbb{N}^*$ on pose $S_n = \frac{1}{1^2} + \frac{1}{2^2} + \ldots + \frac{1}{n^2}$.

- 1) Montrer que : $\forall n \in \mathbb{N}^*, S_n \leq 2 \frac{1}{n}$.
- 2) En déduire que la suite de terme général S_n est convergente.

EXERCICE 4

On considère la parabole \mathcal{P} d'équation $y=x^2$. Soient x_1 et x_2 deux réels distincts et soient M_1 , M_2 et M les points de \mathcal{P} d'abscisses respectives x_1 , x_2 et $\frac{x_1+x_2}{2}$. Montrer que la tangente à \mathcal{P} en M est parallèle à la droite (M_1M_2) .

EXERCICE 5

Déterminer les réels a pour lesquels l'équation $x^3 - 3x^2 - 24x + a = 0$ a exactement deux solutions réelles distinctes. On pourra faire une étude de fonction.