Fiche d'exercices : Nombres complexes

Exercice 1 Écrire sous forme algébrique :

$$(2-5i)^2 \; ; \; \frac{1}{3+2i} \; ; \; \frac{1+i\sqrt{2}}{\sqrt{2}-i} \; ; \; \frac{(3-2i)(4+i)}{2i(1-4i)} \; ; \; (2+i)^3 \; ; \; 2e^{i\frac{\pi}{6}} \; ; \; \left(\frac{1+i}{-1+i}\right)^{2024}.$$

Exercice 2 Écrire sous forme trigonométrique :

$$1+i\sqrt{3} \; ; \; \frac{\sqrt{6}-i\sqrt{2}}{2} \; ; \; \frac{\sqrt{6}-i\sqrt{2}}{2(1+i\sqrt{3})} \; ; \; -1 \; ; \; i \; ; \; -2e^{i\frac{\pi}{6}} \; ; \; (1+i)^{2024}.$$

Exercice 3 Déterminer les $n \in \mathbb{N}^*$ pour lesquels $(1 + i\sqrt{3})^n$ est un réel positif.

Exercice 4 Résoudre dans \mathbb{C} l'équation $2z - i\overline{z} = 6 - 6i$.

Exercice 5 Soient $a, b \in \mathbb{U}$ tels que $ab \neq -1$. Montrer que $\frac{a+b}{1+ab} \in \mathbb{R}$.

Exercice 6 Soit $z \in \mathbb{C}^*$. Montrer que : $z + \frac{1}{z} \in \mathbb{R} \Leftrightarrow (z \in \mathbb{R} \text{ ou } |z| = 1)$.

Exercice 7 Déterminer l'ensemble des nombres complexes z tels que $|z| = \frac{1}{|z|} = |z - 1|$.

Exercice 8 Soit z = x + iy un complexe (avec x, y réels). Soit $Z = \frac{z - 2 + i}{iz + 1}$.

1) Exprimer les parties réelle et imaginaire de Z en fonction de x et y.

2) Déterminer l'ensemble des points M d'affixe z tels que Z est un imaginaire pur.

3) Déterminer l'ensemble des points M d'affixe z tels que Z est un nombre réel.

Exercice 9 Soit θ un réel. Exprimer $\cos 5\theta$ en fonction de $\cos \theta$ et en déduire les valeurs exactes de $\cos \frac{\pi}{10}$ et $\sin \frac{\pi}{10}$.

Exercice 10 Résoudre dans \mathbb{R} l'équation $\sqrt{3}\cos x - \sin x = 1$.

Exercice 11 Calculer $\int_{\frac{\pi}{12}}^{\frac{\pi}{8}} \sin x \sin 2x \sin 3x \, dx$.

Exercice 12 Soient θ un réel et n un entier naturel. Calculer les sommes suivantes :

$$\sum_{k=0}^{n} \binom{n}{k} \cos(k\theta) \; \; ; \; \; \sum_{k=0}^{n} \cos^{2}(k\theta) \; \; ; \; \; \sum_{k=0}^{n} \frac{\cos(k\theta)}{\cos^{k}\theta} \; \; ; \; \; \sum_{k=0}^{n} 3^{k} \sin^{3} \frac{\theta}{3^{k+1}}.$$

Exercice 13 Résoudre dans $\mathbb C$ les équations suivantes :

$$z^{3} = 1 - i$$
; $z^{3} = \overline{z}$; $z^{2} + 3z + 5 = 0$; $z^{3} - z - 6 = 0$; $z^{4} + 2z^{2} - 4 = 0$.

Exercice 14 Résoudre dans \mathbb{C} l'équation $z^3 + (2i-11)z^2 + (25-19i)z - 8(1-3i) = 0$, sachant qu'elle admet une solution réelle.

Exercice 15 Résoudre dans \mathbb{C}^2 le système $\begin{cases} z_1 + z_2 = 5 \\ z_1 z_2 = 7 + i \end{cases} .$

Exercice 16 Résoudre dans \mathbb{C} l'équation $\left(\frac{2z+1}{z-1}\right)^4=1$.

Exercice 17 Calculer la somme et le produit des racines n^e de l'unité.

Exercice 18 Soit $n \in \mathbb{N}^*$. Résoudre dans \mathbb{C} l'équation $(z+1)^n - (z-1)^n = 0$.

Exercice 19 Calculer $\sum_{k=0}^{n} {3n \choose 3k}$. On pourra développer $(1+1)^{3n}$, $(1+j)^{3n}$ et $(1+j^2)^{3n}$.

Exercice 20 Soit $n \in \mathbb{N}^*$ et $\omega = e^{i\frac{2\pi}{n}}$. Soit $p \in \mathbb{N}$. Calculer $\sum_{k=0}^{n-1} \omega^{kp}$ puis $\sum_{k=0}^{n-1} (1 + \omega^k)^n$.

Exercice 21 Soit $n \in \mathbb{N}^*$. Calculer $\sum_{z \in \mathbb{U}_n} |1 + z|$.

Exercice 22 Soit $\omega = e^{i\frac{2\pi}{5}}$. Montrer que $\alpha = \omega + \omega^4$ et $\beta = \omega^2 + \omega^3$ sont les solutions de l'équation $z^2 + z - 1 = 0$. En déduire les valeurs exactes de $\cos\frac{2\pi}{5}$ et $\sin\frac{2\pi}{5}$.

Exercice 23 Résoudre dans \mathbb{C} l'équation $(E): z^{2n} - 2z^n \cos n\theta + 1 = 0$, où θ est un réel et n un entier naturel non nul.

Exercice 24 Résoudre dans \mathbb{C} l'équation $e^z=2$ et représenter les solutions dans le plan complexe. Même question avec l'équation $e^z=1+i$.

Exercice 25 Résoudre dans \mathbb{C} l'équation $e^{2z} - 6e^z + 12 = 0$.

Dans les exercices suivants, le plan est muni d'un repère orthonormal direct (O, \vec{u}, \vec{v}) .

Exercice 26 On considère les points A, B et C d'affixes respectives 1, i et $1 - i\sqrt{2}$. Calculer les longueurs AB, AC et BC et déterminer une mesure des angles $(\overrightarrow{AB}, \overrightarrow{AC})$, $(\overrightarrow{BC}, \overrightarrow{BA})$ et $(\overrightarrow{CA}, \overrightarrow{CB})$.

Exercice 27 On considère les points A, B et C d'affixes respectives a = i, b = 2 - i et $c = 1 + \sqrt{3} + i\sqrt{3}$. Calculer $\frac{c-a}{b-a}$ et en déduire la nature du triangle ABC.

Exercice 28 On considère les points A et B d'affixes respectives 1 et i. Déterminer les affixes des points C tels que le triangle ABC soit équilatéral.

Exercice 29

- 1) Déterminer l'ensemble des points M d'affixe z tels que |z-3+2i|=2.
- 2) Déterminer l'ensemble des points M d'affixe z tels que |z-2-i|=|z+1+3i|.
- 3) Déterminer l'ensemble des points M d'affixe z tels que |(1+i)z 2i| = 2.

Exercice 30 Déterminer l'ensemble des points d'affixe z tels que :

- 1) les points d'affixes respectives z, z^2 et z^4 sont alignés.
- 2) les points d'affixes respectives i, z et iz sont alignés.
- 3) les points d'affixes respectives 1, z et z^2 forment un triangle rectangle.

Exercice 31 Pour tout $z \in \mathbb{C}$ distinct de -2 - i, on pose $Z = \frac{z - 4 - 2i}{z + 2 + i}$.

- 1) Déterminer l'ensemble des points M d'affixe z tels que |Z| = 1.
- 2) Déterminer l'ensemble des points M d'affixe z tels que Z est un réel positif.
- 3) Déterminer l'ensemble des points M d'affixe z tels que Z est un imaginaire pur.

Exercice 32 Soient A, B et C trois points d'affixes respectives a, b et c.

- 1) Montrer que le triangle ABC est équilatéral direct si et seulement si $a + jb + j^2c = 0$.
- 2) Montrer que le triangle ABC est équilatéral si et seulement si $a^2 + b^2 + c^2 = ab + ac + bc$.

Exercice 33 Soit ABC un triangle quelconque. Extérieurement au triangle ABC on construit les triangles ABB' et ACC', tous deux rectangles et isocèles en A. Soit M le milieu du segment [BC]. Montrer que les droites (AM) et (B'C') sont perpendiculaires et que B'C' = 2AM.

Exercice 34 Soient $z_1, z_2 \in \mathbb{C}^*$. Montrer que $\frac{z_1}{z_2}$ est un imaginaire pur si et seulement si $|z_1 + z_2| = |z_1 - z_2|$. Interpréter ce résultat dans le plan complexe.

 $\textbf{Exercice 35} \ \ \text{Les propositions suivantes sont-elles vraies ou fausses? Justifier la réponse.}$

- 1) $\forall z \in \mathbb{C}$, $\operatorname{Re}(iz) = -\operatorname{Im}(z)$.
- 2) $\forall (a,b) \in \mathbb{C}^2$, $\overline{a+ib} = a-ib$.
- 3) $\forall z \in \mathbb{C}, \ \overline{e^{iz}} = e^{-iz}.$
- 4) $\forall (z_1, z_2) \in \mathbb{C}^2, |z_1 z_2| \leq |z_1| + |z_2|$
- 6) j est une racine 9^e de l'unité.
- 7) Si n divise p, alors $\mathbb{U}_n \subset \mathbb{U}_p$.
- 8) Si |z| = 5 et que |z 1| = |z 2| alors |z 3| = 5.