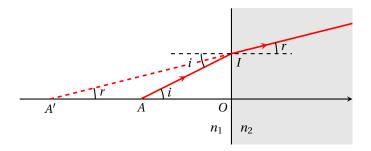
Application 1

Dans le cas $n_2 > n_1$ les rayons s'approchent de la normale en se réfractant. L'image se forme alors **en amont de l'objet** (dans le sens de l'axe optique), comme on le voit sur la figure ci-dessous.



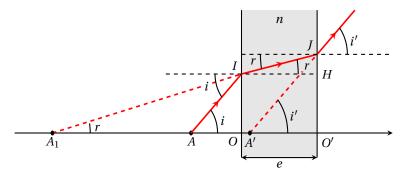
D'après la relation de conjugaison du dioptre plan et puisque $n_2 > n_1$:

$$\overline{OA'} = \frac{n_2}{n_1} \overline{OA} \implies \overline{OA'} < \overline{OA} < 0$$

La figure est bien cohérente avec la relation de conjugaison.

Application 2

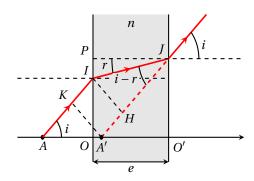
Les deux dioptres sont plans et parallèles donc l'axe orthogonal passant par A fait figure d'axe optique. On trace la marche d'un rayon lumineux issu de A et traversant la vitre en arrivant sous une incidence i. On note respectivement A_1 et A' l'image intermédiaire par le premier dioptre et l'image par la vitre, dans les conditions de Gauss.



On applique les lois de la réfraction en I et J:

$$\sin i = n \sin r = \sin i' \iff i = i'$$

Le rayon incident et le rayon émergent sont parallèles (voir exercice 7 du chapitre 1).



Dans le triangle *IJP* rectangle en *P* on peut écrire $IJ = \frac{e}{\cos r}$.

Dans le triangle IJH rectangle en H on peut écrire $IH = IJ\sin(i-r)$.

Dans le triangle AA'K rectangle en K on peut écrire $\overline{AA'} = \frac{A'K}{\sin i} = \frac{IH}{\sin i}$.

À partir des relations précédentes on obtient que $\overline{AA'} = \frac{\sin(i-r)}{\sin i \cos r}e$. On simplifie dans les conditions de

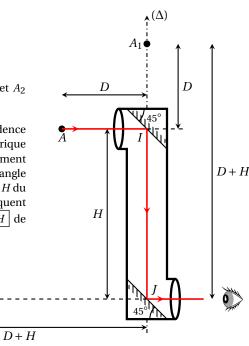
Gauss: $\overline{AA'} = \left(1 - \frac{r}{i}\right)e$. La loi de la réfraction dans les conditions de Gauss s'écrit $i = nr \iff \frac{r}{i} = \frac{1}{n}$.

On conclut: $\overline{AA'} = \left(1 - \frac{1}{n}\right)e^{-\frac{1}{n}}$

Application 3

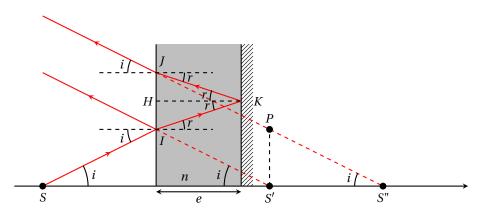
On représente sur un schéma les positions de A_1 et A_2 définis par $A \overset{(M_1)}{\longleftrightarrow} A_1 \overset{(M_2)}{\longleftrightarrow} A_2$.

L'objet A est situé à une distance D du point d'incidence I sur le miroir (M_1) . Son image A_1 est son symétrique par rapport au miroir donc celle-ci se trouve également à la distance D de I. Comme le rayon est dévié à angle droit on peut dire que A_1 se trouve à la distance D+H du point d'incidence I sur le miroir I sur le miroir I par conséquent l'image finale I se trouve à une distance I de l'axe I



** Exercice 1 : Réflexion sur une lame de verre

1. et 2.



3. Pour déterminer la distance $\overline{S'S''}$, commençons par remarquer que S'P = IJ et que tan $i = \frac{S'P}{S'S''}$ (triangle S'S''P).

Dans les conditions de Gauss, on peut donc utiliser l'approximation suivante : $\overline{S'S''} = \frac{IJ}{i}$. L'étape suivante consiste à déterminer l'expression de IJ. On remarque que IJ = 2IH, avec $\tan r \approx r = 1$

L'étape suivante consiste à déterminer l'expression de IJ. On remarque que IJ = 2IH, avec $\tan r \approx r = \frac{IH}{\rho} \iff IJ = 2er$.

La loi de la réfraction en I s'écrit sin $i=n\sin r$, ou encore dans les conditions de Gauss, i=nr.

Des résultats précédents, on déduit que : $\boxed{\overline{S'S''} = \frac{2er}{i} = \frac{2e}{n}}$

** Exercice 2 : Dioptre sphérique

1. Dans les triangles AHI et CHI, on peut écrire :

$$\tan \alpha \simeq \alpha = -\frac{\overline{HI}}{\overline{HA}} \simeq -\frac{\overline{HI}}{\overline{OA}}$$
 et $\tan \gamma \simeq \gamma = \frac{\overline{HI}}{\overline{HC}} \simeq \frac{\overline{HI}}{R}$

ce qui revient à dire que : $\overline{HI} = -\alpha \overline{OA} = \gamma R \iff \boxed{\gamma = -\frac{\overline{OA}}{R}\alpha}$.

2. Dans le triangle \widehat{AIC} , $\widehat{AIC} = \pi - i$. En sommant les angles de ce triangle, on montre que :

$$\alpha + \pi - i + \gamma = \pi \iff i = \alpha + \gamma$$

3. Dans le triangle ICA', $\widehat{ICA'} = \pi - \gamma$. En sommant les angles de ce triangle, on montre que :

$$r + \pi - \gamma + \beta = \pi \iff \boxed{\gamma = r + \beta}$$

On en déduit que $\beta=\gamma-r=-\frac{\overline{OA}}{R}\alpha-r$. D'après la loi de la réfraction en I:i=nr (dans les CG), ce qui amène à :

$$\beta = -\frac{\overline{OA}}{R}\alpha - \frac{i}{n} = -\frac{\overline{OA}}{R}\alpha - \frac{1}{n}\left(\alpha + \gamma\right) = -\frac{\overline{OA}}{R}\alpha - \frac{1}{n}\left(\alpha - \frac{\overline{OA}}{R}\alpha\right)$$

Après simplifications, on obtient la relation suivante : $\boxed{\beta = -\frac{\alpha}{n} \left[\frac{(n-1)\overline{OA}}{R} + 1 \right] }.$

4. Dans le triangle A'HI, on peut écrire : $\tan\beta \simeq \beta = -\frac{\overline{HI}}{\overline{HA'}} \simeq \frac{\overline{HI}}{\overline{OA'}}$. En utilisant le résultat de la question 1, on montre que : $-\alpha \overline{OA} = \beta \overline{OA'}$. En utilisant l'expression de β obtenue à la question précédente, il vient que :

$$-\alpha \overline{OA} = -\frac{\alpha}{n} \left[\frac{(n-1)\overline{OA}}{R} + 1 \right] \overline{OA}' \iff n \overline{OA} = \frac{n-1}{R} \overline{OA} \cdot \overline{OA'} + \overline{OA'}$$

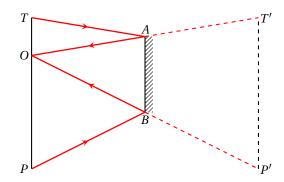
En divisant cette équation par $\overline{OA} \cdot \overline{OA'}$, on arrive au résultat attendu.

5. Pour que l'image d'un objet à l'infini sur l'axe optique se forme au point B, il faut que $\overline{OA'} = 2R$. D'après la relation de conjugaison établie à la question précédente, cela revient à dire que n vérifie :

$$\frac{n}{2R} = \frac{n-1}{R} \iff \boxed{n=2}$$

** Exercice 3 : Taille d'un miroir plan

Une personne se tenant devant le miroir est modélisée par un segment allant des pieds P à la tête T. L'œil est placé en O. On représente graphiquement la situation limite, dans laquelle le miroir est juste assez grand pour que l'observateur arrive à voir l'image de ses pieds P' et de sa tête T'.



L'image P'T' est le symétrique de PT par rapport au miroir, ce qui signifie que $OA = \frac{1}{2}OT'$. Comme les triangles OAB et OP'T' sont isométriques, on peut appliquer le théorème de Thalès : $\frac{AB}{P'T'} = \frac{OA}{OT'} = \frac{1}{2}$. La taille du miroir est la moitié de celle de l'image, donc la moitié de celle de l'observateur. En conclusion, une personne de taille h peut se voir entièrement dans un miroir plan à condition que celui-ci ait une taille **au moins égale à h/2**.

** Exercice 4: Association de deux miroirs quasi-orthogonaux

- 1. L'image A_1' est le symétrique de A par rapport au miroir (M_1) . On représente sa position sur la figure en page suivante. Puisque O appartient au miroir (M_1) alors les droites (OA) et (OA_1) sont ellesmêmes symétriques par rapport à (M_1) . Sachant que (OA) fait un angle $\alpha/2$ avec (M_1) on en déduit que A_1 s'obtient à partir de A par une rotation de centre O et d'angle $\beta_1 = 2 \times \alpha/2 = \alpha$.
- 2. Par un raisonnement analogue on détermine la position de A_{12}'' par rapport à A_1' . La droite (OA_1') fait un angle $3\alpha/2$ avec le miroir (M_2) donc $\widehat{A_1'OA_{12}''}=3\alpha$. On détermine alors β_{12} :

$$\widehat{A_1'OA_{12}''} = \beta_1 + \beta_{12} \iff \widehat{\beta_{12} = \widehat{A_1'OA_{12}''}} - \beta_1 = 2\alpha$$

Par symétrie les déviations qui permettent de trouver A_2' et A_{21}'' sont identiques : $\beta_2 = \alpha$ et $\beta_{21} = 2\alpha$, mais avec une rotation dans le sens inverse. On conclut :

$$\widehat{A_{12}''OA_{21}''} = 2\pi - \beta_{12} - \beta_{21} = 2\pi - 4\alpha \iff \boxed{\widehat{A_{12}''OA_{21}''} = 4\varepsilon}$$

