Colle n°4

CALCUL

III Inégalités dans $\mathbb R$

- 1. Opérations et relation d'ordre dans \mathbb{R}
- 2. Valeur absolue
- 3. Minorants, majorants
- 4. Plus petit élément, plus grand élément
- 5. Partie entière

IV Trigonométrie

- 1. Définitions
- 2. Symétries
- 3. Valeurs remarquables
- 4. Formules usuelles

NOMBRES COMPLEXES

I Corps des nombres complexes

- 1. Forme algébrique d'un nombre complexe
- 2. Opérations dans \mathbb{C}
- 3. Représentation géométrique des nombres complexes
- 4. Conjugaison

II Forme trigonométrique d'un nombre complexe

- 1. Module d'un nombre complexe
- 2. Nombres complexes de module 1
- 3. Arguments d'un nombre complexe non nul

III Application à la trigonométrie

- 1. Expression de $\cos n\theta$ et $\sin n\theta$ en fonction de $\cos \theta$ et $\sin \theta$
- 2. Linéarisation de $\cos^n \theta$ et de $\sin^n \theta$
- 3. Transformation de $a\cos x + b\sin x$ en $A\cos(x-\varphi)$
- 4. Factorisation de $1+e^{i\theta}$ et de $e^{ia}+e^{ib}$
- 5. Calcul de $\sum_{k=0}^{n} \cos kx$ et de $\sum_{k=0}^{n} \sin kx$

IV Équations dans $\mathbb C$

- 1. Racines n^e de l'unité
- 2. Équation $z^n = a \ (a \in \mathbb{C})$
- 3. Cas particulier : racines carrées
- 4. Équation du second degré à coefficients complexes

Questions de cours :

- 1) Démonstration d'une des formules suivantes : $\tan(a+b)$, $\cos(2x)$, $\sin(2x)$, $\cos^2 x$, $\sin^2 x$, $\cos(a)\cos(b)$, $\cos p + \cos q$.
- 2) Calcul de $\sum_{k=0}^{n} \cos kx$ et de $\sum_{k=0}^{n} \sin kx$ (proposition 17 page 11).
- 3) Équation du second degré à coefficients complexes (proposition 21 page 14).