Devoir n°5 (non surveillé)

EXERCICE 1

Montrer que $\cos \frac{\pi}{17} + \cos \frac{3\pi}{17} + \cos \frac{5\pi}{17} + \dots + \cos \frac{15\pi}{17} = \frac{1}{2}$.

EXERCICE 2

Résoudre dans \mathbb{C} l'équation $z^8 - (5+i)z^4 + 4 + 4i = 0$.

EXERCICE 3

- 1) Soit le nombre complexe u=1+i. Pour tout entier naturel n, on pose $S_n=u^n+\overline{u}^n$.
 - a) Mettre u et \overline{u} sous forme trigonométrique.
 - b) En déduire que, pour tout $n \in \mathbb{N}$, il existe deux réels a_n et θ_n à préciser tels que $S_n = a_n \cos \theta_n$.
 - c) Pour quelles valeurs de n a-t-on $S_n = 0$?
 - d) Montrer que, si n est pair, alors S_n est un entier.
- 2) Soit m un entier naturel.
 - a) Développer $(1+i)^{2m}$ et $(1-i)^{2m}$ à l'aide de la formule du binôme.
 - b) Soit p un entier naturel. Simplifier $i^{2p+1} + (-i)^{2p+1}$ et $i^{2p} + (-i)^{2p}$.
 - c) Déduire des questions précédentes que $\sum_{p=0}^m (-1)^p \binom{2m}{2p} = 2^m \cos \frac{m\pi}{2}.$

EXERCICE 4

Le plan est muni d'un repère orthonormal direct (O, \vec{u}, \vec{v}) . Soit z un nombre complexe. On considère les points A, B et M d'affixes respectives 1, i et z. Soit N l'image du point M par la rotation de centre O et d'angle $\pi/2$. Soient P, Q, R et S les milieux respectifs des segments [AB], [BM], [MN] et [NA].

- 1) Quelles sont les affixes des points N, P, Q, R et S?
- 2) Montrer que le quadrilatère *PQRS* est un carré.
- 3) On pose $z = \rho e^{i\theta}$ où ρ est un réel strictement positif fixé et θ varie dans \mathbb{R} . Pour quelles valeurs de θ l'aire du carré PQRS est-elle maximale?