
DM de physique n° 8

Exercice: Escalier en colimaçon

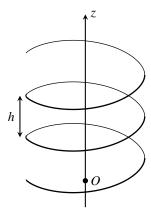
Un escalier en forme d'hélice, d'axe (Oz), de rayon b et de hauteur H, a pour équations paramétriques en coordonnées cylindriques : r = b et $z = K\theta$, avec K une constante positive et θ la position angulaire autour de l'axe (Oz).

À l'instant t = 0 une personne commence à monter l'escalier à vitesse constante en norme v.

Pour les applications numériques, on prendra $H = 15 \,\mathrm{m}$, $b = 1 \,\mathrm{m}$ et $K = 0, 4 \,\mathrm{m}$.

- 1. De quelle altitude h s'élève-t-on si l'on effectue un tour complet dans l'escalier en montant ?
- **2.** Exprimer v en fonction de b, K et de la vitesse ascensionnelle \dot{z} . Justifier que cette dernière est constante.
- 3. Déterminer numériquement ν sachant que la personne gravit l'escalier en $T=67\,\mathrm{s}$.
- **4.** On note α l'angle entre le vecteur vitesse \vec{v} et l'horizontale. Montrer que α est constant et calculer sa valeur.
- **5.** Déterminer littéralement et numériquement la distance *L* parcourue quand on gravit l'escalier en entier.

PCSIA à rendre pour le 25/11/2024


DM de physique n° 8

Exercice : Escalier en colimaçon

Un escalier en forme d'hélice, d'axe (Oz), de rayon b et de hauteur H, a pour équations paramétriques en coordonnées cylindriques : r = b et $z = K\theta$, avec K une constante positive et θ la position angulaire autour de l'axe (Oz).

À l'instant t = 0 une personne commence à monter l'escalier à vitesse constante en norme v.

Pour les applications numériques, on prendra $H = 15 \,\text{m}$, $b = 1 \,\text{m}$ et $K = 0, 4 \,\text{m}$.

- 1. De quelle altitude h s'élève-t-on si l'on effectue un tour complet dans l'escalier en montant ?
- **2.** Exprimer v en fonction de b, K et de la vitesse ascensionnelle \dot{z} . Justifier que cette dernière est constante.
- 3. Déterminer numériquement v sachant que la personne gravit l'escalier en T=67 s.
- **4.** On note α l'angle entre le vecteur vitesse \vec{v} et l'horizontale. Montrer que α est constant et calculer sa valeur.
- **5.** Déterminer littéralement et numériquement la distance *L* parcourue quand on gravit l'escalier en entier.