Fiche d'exercices : Ensembles - Applications

Exercice 1 Soient E un ensemble et A et B des parties de E. Montrer que si $A \subseteq B$ alors $\overline{B} \subset \overline{A}$. La réciproque est-elle vraie?

Exercice 2 Soient E un ensemble et A et B des parties de E. Simplifier :

$$A \cap \overline{A}$$
; $A \cup \overline{A}$; $A \setminus \overline{A}$; $(A \setminus B) \cap B$; $(A \setminus B) \cup B$; $(A \setminus B) \cup (A \cap B)$.

Exercice 3 Soient E un ensemble et A, B, C des parties de E.

- 1) Montrer que $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$ et que $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.
- 2) Montrer que $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$ et que $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$.

Exercice 4 Soient E un ensemble et A et B des parties de E. On définit la différence symétrique de A et B par $A \Delta B = (A \setminus B) \cup (B \setminus A)$.

- 1) Montrer que $A \Delta B = (A \cup B) \setminus (A \cap B)$.
- 2) Exprimer $\mathbb{1}_{A \Delta B}$ en fonction de $\mathbb{1}_A$ et $\mathbb{1}_B$.
- 3) Montrer que Δ est associative.
- 4) Montrer que \cap est distributive par rapport à Δ .

Exercice 5 Soient E un ensemble et A et B des parties de E.

- 1) Montrer que $A \cup B = A \cap B$ si et seulement si A = B.
- 2) Montrer que $A \setminus B = A$ si et seulement si $B \setminus A = B$.

Exercice 6 Soient E un ensemble et A, B_1, \ldots, B_n des parties de E.

- 1) Montrer que $A \cup (B_1 \cap \ldots \cap B_n) = (A \cup B_1) \cap \ldots \cap (A \cup B_n)$.
- 2) Montrer que $A \cap (B_1 \cup \ldots \cup B_n) = (A \cap B_1) \cup \ldots \cup (A \cap B_n)$.

Exercice 7 Soient E un ensemble, A et B des parties de E.

- 1) Résoudre dans $\mathcal{P}(E)$ l'équation $A \cup X = B$.
- 2) Résoudre dans $\mathcal{P}(E)$ l'équation $A \cap X = B$.

Exercice 8 On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^3 - 3x + 1$.

- 1) Étudier f.
- 2) Soient A = [0, 1], B = [0, 2] et C = [-3/2, 3/2]. Déterminer f(A), f(B) et f(C).
- 3) Soient $D = \{3\}$, $E = \{1\}$ et F = [1, 3]. Déterminer $f^{-1}(D)$, $f^{-1}(E)$ et $f^{-1}(F)$.

Exercice 9 Les applications suivantes sont-elles injectives, surjectives, bijectives?

- 3) $f: \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto x$. 4) $f: \mathbb{R} \to \mathbb{R}^2, x \mapsto (x, x)$.
- 1) $f: \mathbb{R} \to \mathbb{Z}, x \mapsto \lfloor x \rfloor$. 2) $f: \mathbb{Z} \to \mathbb{Z}, n \mapsto 2n^2 + n$.

Exercice 10 Soit l'application $f: \mathbb{N}^2 \to \mathbb{N}$ définie par f(p,q) = p + q. Est-elle injective, surjective? Déterminer $f(P \times P)$, $f^{-1}(\{4\})$, $f^{-1}(P)$ où $P = \{2n \mid n \in \mathbb{N}\}$.

Exercise 11 Soient $P = \{z \in \mathbb{C} \mid \text{Im } z > 0\}$ et $D = \{z \in \mathbb{C} \mid |z| < 1\}$. Montrer que $f: z \mapsto \frac{z-i}{z+i}$ définit une bijection de P sur D.

Exercice 12 Soient E, F et G des ensembles et $f: E \to F$, $q: F \to G$ des applications. Montrer que:

- 1) Si $g \circ f$ est injective, alors f aussi.
- 2) Si $g \circ f$ est surjective, alors g aussi.

Exercice 13 Soit E un ensemble et $f: E \to E$ une application telle que $f \circ f = f$.

- 1) Montrer que si f est injective alors $f = Id_E$.
- 2) Montrer que si f est surjective alors $f = \mathrm{Id}_E$.

Exercice 14 Soient E, F, G et H des ensembles. Soient $f: E \to F$, $g: F \to G$ et $h:G\to H$ des applications. On suppose que $g\circ f$ et $h\circ g$ sont bijectives. Montrer que f, q et h sont bijectives.

Exercice 15 Soient E et F des ensembles, $f: E \to F$ une application, $A, B \in \mathcal{P}(E)$.

- 1) Montrer que si $A \subset B$ alors $f(A) \subset f(B)$.
- 2) Montrer que $f(A \cup B) = f(A) \cup f(B)$.
- 3) Montrer que $f(A \cap B) \subset f(A) \cap f(B)$. A-t-on toujours $f(A) \cap f(B) \subset f(A \cap B)$?
- 4) Montrer que si f est injective, alors $f(A \cap B) = f(A) \cap f(B)$.

Exercice 16 Soient E et F des ensembles, $f: E \to F$ une application, $A, B \in \mathcal{P}(F)$.

- 1) Montrer que si $A \subset B$ alors $f^{-1}(A) \subset f^{-1}(B)$.
- 2) Montrer que $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.
- 3) Montrer que $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.

Exercice 17 Soient E et F des ensembles et $f: E \to F$ une application. Montrer que:

- 1) f est surjective si et seulement si pour tout $B \subset F$, $f(f^{-1}(B)) = B$.
- 2) f est injective si et seulement si pour tout $A \subset E$, $f^{-1}(f(A)) = A$.

Exercice 18 Soient E et F des ensembles et $f: E \to F$ une application. Montrer que:

- 1) Pour tout $B \subset F$, $f^{-1}(\overline{B}) = \overline{f^{-1}(B)}$.
- 2) f est bijective si et seulement si pour tout $A \subset E$, $f(\overline{A}) = \overline{f(A)}$.

Exercice 19 Soit E un ensemble et soient A et B des parties de E. Soit l'application $f: \mathcal{P}(E) \to \mathcal{P}(A) \times \mathcal{P}(B)$ définie par $f(X) = (X \cap A, X \cap B)$.

- 1) Montrer que f est injective si et seulement si $A \cup B = E$.
- 2) Montrer que f est surjective si et seulement si $A \cap B = \emptyset$.
- 3) Déterminer f^{-1} lorsque f est bijective.