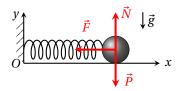
Application 1

1. La masse est soumise à son poids \vec{P} , à la réaction normale \vec{N} du support et à la force de rappel du ressort \vec{F} . Étant donnée la position de l'origine du repère la longueur du ressort est : $\ell = x$ donc $\vec{F} = -k(x - \ell_0)\vec{u}_x$.



On applique le principe fondamental de la dynamique à la masse dans le référentiel terrestre supposé galiléen : $m\vec{a} = \vec{P} + \vec{N} + \vec{F}$. On le projette sur \vec{u}_x :

$$m\ddot{x} = -k(x - \ell_0) \iff \boxed{\ddot{x} + \frac{k}{m}x = \frac{k}{m}\ell_0}$$

La pulsation propre vaut : $\omega_0 = \sqrt{k/m}$

<u>Remarque</u>: L'origine du repère n'est pas confondue avec la position d'équilibre de la masse. Cette fois-ci, comme on pouvait s'y attendre, l'équation du mouvement admet un second membre.

2. On détermine la solution particulière en résolvant l'équation sans dérivée : $x_p = \ell_0$. La solution générale de l'équation s'écrit $x(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t) + \ell_0$. On détermine les constantes d'intégration A et B avec les conditions initiales $x(0) = \ell_0$ (ressort dans son état de repos) et $\dot{x}(0) = \nu_0$.

On obtient
$$A = 0$$
 et $B = v_0/\omega_0$ d'où : $x(t) = \frac{v_0}{\omega_0} \sin(\omega_0 t) + \ell_0$

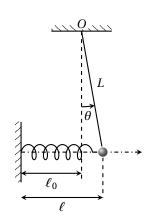
L'allongement du ressort vaut $\Delta \ell = x - \ell_0 = \frac{v_0}{\omega_0} \sin(\omega_0 t)$. Sa valeur maximale est atteinte lorsque

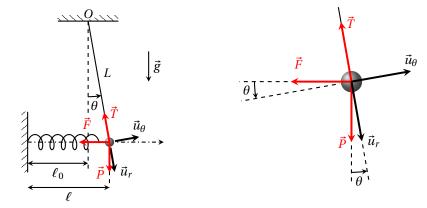
$$\sin(\omega_0 t) = 1 \text{ et vaut : } \boxed{\Delta \ell_{\text{max}} = \frac{\nu_0}{\omega_0} = \sqrt{\frac{m}{k}} \nu_0}$$

Application 2

1. D'après le schéma ci-contre, la longueur du fil étant égale à L, on peut écrire : $\ell-\ell_0=L\sin\theta$. On simplifie dans l'approximation des petits angles :

$$\ell - \ell_0 \simeq L\theta$$





2. La masse est soumise à son poids \vec{P} , à la tension du fil \vec{T} et à la force de rappel du ressort \vec{F} . On représente ces forces sur le schéma (ci-dessus à gauche) et on met en évidence les directions de ces forces par rapport aux vecteurs de la base polaire (ci-dessus à droite). D'après le résultat de la question précédente : $\vec{F} = -kL\theta \vec{u}_x$. On applique le principe fondamental de la dynamique à la masse dans le référentiel terrestre supposé galiléen : $m\vec{a} = \vec{P} + \vec{T} + \vec{F}$. On le projette dans la base $(\vec{u}_r, \vec{u}_\theta)$:

$$\begin{vmatrix} -mL\dot{\theta}^2 \\ mL\ddot{\theta} \end{vmatrix} = \begin{vmatrix} mg\cos\theta \\ -mg\sin\theta \end{vmatrix} + \begin{vmatrix} -\|\vec{T}\| \\ 0 \end{vmatrix} + \begin{vmatrix} -kL\theta\sin\theta \\ -kL\theta\cos\theta \end{vmatrix}$$

Le PFD projeté sur \vec{u}_{θ} , simplifié avec les approximations $\sin \theta \approx \theta$ et $\cos \theta \approx 1$, devient :

$$mL\ddot{\theta} = -mg\theta - kL\theta \iff \boxed{\ddot{\theta} + \left(\frac{g}{L} + \frac{k}{m}\right)\theta = 0}$$

La pulsation propre est $\omega_0 = \sqrt{\frac{g}{L} + \frac{k}{m}}$ et la période propre : $T_0 = \frac{2\pi}{\omega_0} = \frac{2\pi}{\sqrt{\frac{g}{L} + \frac{k}{m}}}$

Application 3

Les deux tensions $u_1(t)$ et $u_2(t)$ sont synchrones : leur période vaut $T = 50 \,\text{ms}$ et leur fréquence $f = 1/T = 20 \,\text{Hz}$.

L'amplitude de $u_1(t)$ vaut $\boxed{U_{1m}=6\text{V}}$ et celle de $u_2(t)$ vaut $\boxed{U_{2m}=4\text{V}}$

L'écart temporel entre les deux tensions vaut $\Delta t = 15 \,\mathrm{ms}$ donc le déphasage vaut :

$$\Delta \varphi = \frac{2\pi}{50} \times 15 = 1,9 \,\text{rad} = 110^{\circ}$$

Sur un intervalle Δt on voit que le maximum de $u_2(t)$ précède celui de $u_1(t)$; la tension $u_2(t)$ est en avance sur $u_1(t)$.

TD9: Oscillateur harmonique - corrigé

Exercice 1: Evolution temporelle d'un oscillateur harmonique

 X_e est la valeur moyenne du signal. Sur le graphique, on lit $X_e = 2 \text{ cm}$

 X_m est l'amplitude du signal, c'est-à-dire la moitié de la valeur crête à crête. On lit $X_m = 5$ cm

La période du signal vaut $T = 50 \,\text{ms}$ donc $\omega_0 = \frac{2\pi}{T} = 1,3 \cdot 10^2 \,\text{rad} \cdot \text{s}^{-1}$

Le signal est maximal, dans l'intervalle $\left[-\frac{T}{2}, \frac{T}{2}\right]$, à la date $t_m = -9$ ms. On en déduit que :

$$\omega_0 t_m + \varphi = 0 \iff \varphi = -\omega_0 t_m = 1 \text{ rad}$$

La vitesse s'écrit $\dot{X}(t) = -\omega_0 X_m \sin(\omega_0 t + \varphi)$. À la date t = 0, en valeur absolue, elle vaut :

$$v(0) = \omega_0 X_m \sin \varphi = 6 \,\mathrm{m \cdot s}^{-1}$$

Exercice 2: Signaux synchrones

Amplitude du signal 1 : $U_1 = 5V$. Amplitude du signal 2 : $U_2 = 3V$

Les deux signaux ont la même période : $T = 100 \,\mathrm{ms}$, donc la même fréquence : $f = T^{-1} = 10 \,\mathrm{Hz}$

La plus petite durée qui sépare deux maxima des signaux 1 et 2 vaut $\Delta t = 17\,\mathrm{ms}$. On en déduit la valeur du déphasage : $\Delta \phi = \frac{2\pi}{T} \Delta t = 1,1\,\mathrm{rad}$.

★ Exercice 3 : Oscillations harmoniques

1. La solution générale de l'équation différentielle est $x(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$. Avec les conditions initiales $\dot{x}(0) = v_0$ et $x(0) = x_0$, on montre que $A = x_0$ et $B = \frac{v_0}{\omega_0} = \frac{T_0 v_0}{2\pi}$. On a ainsi :

$$x(t) = x_0 \cos\left(\frac{2\pi}{T_0}t\right) + \frac{T_0 \nu_0}{2\pi} \sin\left(\frac{2\pi}{T_0}t\right)$$

2. Pour déterminer l'amplitude des oscillations, il faut écrire la position sous la forme $x(t) = X_m(\omega_0 t + \varphi)$. En utilisant une formule trigo, on peut se ramener à l'écriture :

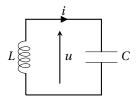
$$x(t) = X_m \cos \varphi \cos(\omega_0 t) - X_m \sin \varphi \sin(\omega_0 t)$$

Par identification avec le résultat de la question 1, X_m et φ doivent vérifier :

$$\begin{cases} X_m \cos \varphi = x_0 & (1) \\ -X_m \sin \varphi = \frac{T_0 v_0}{2\pi} & (2) \end{cases}$$

En écrivant $(1)^2 + (2)^2$, on peut isoler l'amplitude : $X_m = \sqrt{x_0^2 + \left(\frac{T_0 v_0}{2\pi}\right)^2} = 8,5 \text{ cm}$

\star Exercice 4 : Oscillations d'un circuit LC



1. On utilise la loi d'évolution de la bobine et du condensateur (attention, la bobine est en convention générateur) :

$$u = -L\frac{\mathrm{d}i}{\mathrm{d}t} = -LC\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} \iff \boxed{\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \frac{u}{LC} = 0}$$

2. Par continuité, $u(0^+) = u(0^-) = U_0$ et $i(0^+) = i(0^-) = 0$ (le circuit est ouvert à $t = 0^-$). Puisque $\frac{\mathrm{d} u}{\mathrm{d} t} = \frac{i}{C}$, les deux conditions initiales qui permettent de résoudre cette équation différentielle sont :

$$u(0^+) = U_0$$
 et $\frac{du}{dt}(0^+) = 0$

Après calculs, on montre que la solution s'écrit : $u(t) = U_0 \cos(\omega_0 t)$ avec $\omega_0 = \frac{1}{\sqrt{LC}}$

La fréquence des oscillations harmoniques vaut $f_0 = \frac{\omega_0}{2\pi} = \frac{1}{2\pi\sqrt{LC}} = 3,2 \cdot 10^2 \,\mathrm{Hz}$. Leur amplitude vaut $U_0 = 6 \,\mathrm{V}$.

3.
$$i(t) = C \frac{\mathrm{d}u}{\mathrm{d}t} = -\sqrt{\frac{C}{L}} U_0 \sin(\omega_0 t)$$
 L'amplitude des oscillations de $i(t)$ vaut
$$\sqrt{\frac{C}{L}} U_0 = 0,12 \mathrm{A}$$

$$4. \boxed{\mathcal{E}_c = \frac{1}{2}Cu^2 = \frac{CU_0^2}{2}\cos^2(\omega_0 t)}, \boxed{\mathcal{E}_L = \frac{1}{2}Li^2 = \frac{CU_0^2}{2}\sin^2(\omega_0 t)}, \boxed{\mathcal{E} = \mathcal{E}_c + \mathcal{E}_L = \frac{CU_0^2}{2}}$$

L'énergie totale se conserve, ce qui est logique puisqu'il n'y a pas de résistance qui dissipe l'énergie électrique en chaleur.

* Exercice 5: Oscillation verticales d'un ressort

1. On applique le PFS à la masse en équilibre dans le référentiel terrestre supposé galiléen. La masse est soumise à son poids $\vec{P} = mg\vec{u}_z$ et à la force de rappel élastique $\vec{F} = -k(\ell_{\rm eq} - \ell_0)\vec{u}_z$ du ressort :

$$\vec{0} = \vec{P} + \vec{F}$$

On projette cette équation sur (Oz) et on isole ℓ_{eq} :

$$mg - k(\ell_{eq} - \ell_0) = 0 \iff \ell_{eq} = \ell_0 + \frac{mg}{k}$$

TD9: Oscillateur harmonique - corrigé

2. On applique le PFD à la masse en équilibre dans le référentiel terrestre supposé galiléen :

$$m\vec{a} = \vec{P} + \vec{F}$$

La longueur du ressort est liée à la coordonnée z par la relation : $\ell = \ell_{\rm eq} + z$. On projette le PDF sur (Oz) :

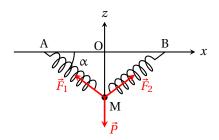
$$m\ddot{z} = mg - k(\ell_{\text{eq}} + z - \ell_0) = -kz \iff \boxed{\ddot{z} + \frac{k}{m}z = 0}$$

3. La solution générale de cette équation est $z(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$ avec $\omega_0 = \sqrt{\frac{k}{m}}$. Avec les conditions initiales $\dot{z}(0) = 0$ et z(0) = -a (ressort comprimé par rapport à sa position d'équilibre), on montre que B = 0 et A = -a:

$$z(t) = -a\cos(\omega_0 t)$$

La vitesse de la masse vaut $\dot{z}(t) = a\omega_0 \sin(\omega_0 t)$. La vitesse maximale vaut $v_{\rm max} = a\omega_0$

★ Exercice 6 : Masse suspendue à deux ressorts



1. On applique le PFS à la masse en équilibre dans le référentiel terrestre supposé galiléen. La masse est soumise à son poids \vec{P} et aux forces de rappel élastique \vec{F}_1 et \vec{F}_2 exercées par les ressorts :

$$\vec{0} = \vec{P} + \vec{F}_1 + \vec{F}_2$$

La force de rappel exercée par le ressort de gauche s'écrit : $\vec{F}_1 = -k\overrightarrow{AM}$ (car la longueur à vide est nulle). De même, la force de rappel exercée par le ressort de droite s'écrit : $\vec{F}_2 = -k\overrightarrow{BM}$. On projette le PFS dans la base cartésienne :

$$\begin{cases} 0 = -ka + ka & \text{sur } \vec{u}_3 \\ 0 = 2ka \tan \alpha - mg & \text{sur } \vec{u}_3 \end{cases}$$

 $\underline{\mathrm{Rq}}$: la projection de \vec{F}_1 sur \vec{u}_z s'obtient en écrivant que $\overrightarrow{\mathrm{AM}} \cdot \vec{u}_z = z = -\mathrm{OM}$, avec $\tan \alpha = \frac{\mathrm{OM}}{\mathrm{OA}} = \frac{\mathrm{OM}}{a}$ (même méthode pour \vec{F}_2).

La projection du PFS sur \vec{u}_z permet de déterminer l'angle α à l'équilibre. Ce dernier vérifie :

$$\tan \alpha = \frac{mg}{2ka}$$

2. On applique le PFD à la masse dans le référentiel terrestre supposé galiléen projeté sur \vec{u}_z :

$$m\ddot{z} = 2kz - mg \iff \ddot{z} + \frac{2k}{m}z = -g$$

L'équation du mouvement est celle d'un OH de pulsation propre $\omega_0=\sqrt{\frac{2k}{m}}$, donc de période propre

$$T_0 = 2\pi \sqrt{\frac{m}{2k}}$$

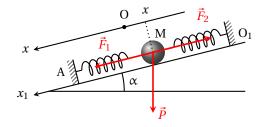
★ Exercice 7 : Pendule de longueur variable

Le pendule effectue un mouvement de petites oscillations autour de la verticale. Étant donnée la géométrie du système, le pendule effectue une demi-oscillation avec une longueur $\ell=1\,\mathrm{m}$ et l'autre demi-oscillation avec une longueur $\frac{\ell}{2}=50\,\mathrm{cm}$.

Sachant que la période propre d'un pendule simple de longueur ℓ vaut $T=2\pi\sqrt{\frac{\ell}{g}}$, on en déduit que la première demi-oscillation dure $t_1=\pi\sqrt{\frac{\ell}{g}}$ et la deuxième $t_2=\pi\sqrt{\frac{\ell}{2g}}$. La période des oscillations de ce pendule vaut donc :

$$T = \pi(1 + \sqrt{2})\sqrt{\frac{\ell}{2g}} = 1.7 \,\mathrm{s}$$

** Exercice 8 : Oscillateur sur un plan incliné



1. On applique le PFS à la masse en équilibre dans le référentiel terrestre supposé galiléen. La masse est soumise à son poids \vec{P} et aux forces de rappel élastique \vec{F}_1 et \vec{F}_2 exercées par les ressorts :

$$\vec{0} = \vec{P} + \vec{F}_1 + \vec{F}_2$$

Le ressort de droite a une longueur $\ell_1 = x_{1e}$ et celui de gauche une longueur $\ell_2 = O_1A - \ell_1 = 2\ell_0 - x_{1e}$. On projette le PFS sur \vec{u}_x :

$$0 = mg \sin \alpha - k(x_{1e} - \ell_0) + k(2\ell_0 - x_{1e} - \ell_0) = mg \sin \alpha - 2kx_{1e} + 2k\ell_0 \iff x_{1e} = \ell_0 + \frac{mg \sin \alpha}{2k}$$

2. En mouvement, le ressort de droite a une longueur $\ell_1 = x_{1e} + x$ et celui de gauche une longueur $\ell_2 = 2\ell_0 - x_{1e} - x$. On projette le PFD sur \vec{u}_x :

$$m\ddot{x} = mg\sin\alpha - k(x + x_{1e} - \ell_0) + k(2\ell_0 - x - x_{1e} - \ell_0) = -2kx \iff \left| \ddot{x} + \frac{2k}{m}x = 0 \right|$$

La solution générale de cette équation est $x(t) = A\cos(\omega_0 t) + B\sin(\omega\omega_0 t)$ avec $\omega_0 = \sqrt{\frac{2k}{m}}$. Avec les conditions initiales $\dot{x}(0) = v_0$ et x(0) = 0, on montre que A = 0 et $B = \frac{v_0}{\omega_0}$.

$$x(t) = \frac{v_0}{\omega_0} \sin(\omega_0 t)$$

** Exercice 9 : Molécule d'acide chlorhydrique

1. Le centre de gravité O est défini par la relation : $m_1\overrightarrow{OH} + m_2\overrightarrow{OCl} = \overrightarrow{0}$. Par projection sur \overrightarrow{u}_x , on obtient la relation : $m_1x_1 + m_2x_2 = 0$. Sachant que $\ell = x_2 - x_1$, on en déduit que :

$$x_1 = -\frac{m_2}{m_1 + m_2} \ell$$
 et $x_2 = \frac{m_1}{m_2 + m_1} \ell$

2. On applique le PFD à l'atome d'hydrogène dans le référentiel terrestre supposé galiléen. On néglige toute autre force que celle exercée par le ressort équivalent :

$$m_1\ddot{x}_1 = +k(\ell-\ell_0)$$

Sachant que $\ddot{x}_1 = -\frac{m_2}{m_1 + m_2} \ddot{\ell}$, on en déduit l'équation différentielle vérifiée par $\ell(t)$:

$$\ddot{\ell} + \frac{(m_1 + m_2)k}{m_1 m_2} \ell = \frac{(m_1 + m_2)k}{m_1 m_2} \ell_0$$

Cette équation est celle d'un OH de pulsation propre $\omega_0=\sqrt{\frac{(m_1+m_2)k}{m_1m_2}}$, donc de fréquence propre :

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{(m_1 + m_2)k}{m_1 m_2}}$$

Cette expression est analogue à celle d'un système avec une masse unique $\left(f_0 = \frac{1}{2\pi}\sqrt{\frac{k}{m_{\rm eq}}}\right)$ telle que :

$$m_{\rm eq} = \frac{m_1 m_2}{m_1 + m_2}$$

Rq : Cette masse $m_{\rm eq}$ est appelée la **masse réduite** de la molécule. Dans cette molécule particulière, l'atome de chlore est beaucoup plus lourd que celui d'hydrogène : $\frac{m_2}{m_1} \simeq 35$. Par conséquent : $m_{\rm eq} = \frac{m_1 m_2}{m_1 + m_2} \simeq m_1$. On remarque également que $x_2 = \frac{m_1}{m_2 + m_1} \ell \ll \ell$ tandis que $x_1 = -\frac{m_2}{m_1 + m_2} \ell \simeq -\ell$.

En première approximation, l'atome de chlore étant bien plus massif que celui d'hydrogène, on peut supposer **qu'il est fixe dans le référentiel d'étude**.

3. Connaissant le nombre d'onde, on peut déterminer numériquement la fréquence propre de vibration de la molécule de HCl :

$$f_0 = \frac{c}{\lambda} = \sigma c = 8,97 \cdot 10^{13} \,\mathrm{Hz}$$

En assimilant la molécule à un système masse + ressort dans lequel seul l'atome d'hydrogène est mobile, on en déduit que :

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{k}{m_1}} \iff \boxed{k = 4\pi^2 f_0^2 m_1 = 530 \,\text{N} \cdot \text{m}^{-1}}$$