Chapitre 8

LIMITES - CONTINUITÉ

Dans tout le chapitre, I est un intervalle de \mathbb{R} non vide et non réduit à un point, et on note $\overline{\mathbb{R}}$ l'ensemble $\mathbb{R} \cup \{-\infty, +\infty\}$ (droite réelle achevée).

I Limite d'une fonction

1 Notion de voisinage

Définition 1 Soit $f: I \to \mathbb{R}$ une fonction et soit a un point de I ou une extrémité de I ($a \in \overline{\mathbb{R}}$). On dit qu'une propriété portant sur f est vraie **au voisinage de** a si elle est vraie :

- $si \ a \in \mathbb{R} : sur \ un \ intervalle \ de \ la \ forme \ I \cap [a \delta, a + \delta], \ où \ \delta \in \mathbb{R}_+^*,$
- $si \ a = +\infty : sur \ un \ intervalle \ de \ la \ forme \ I \cap [A, +\infty[, \ où \ A \in \mathbb{R},$
- $si \ a = -\infty : sur \ un \ intervalle \ de \ la \ forme \ I \cap] \infty, A], \ où \ A \in \mathbb{R}.$

Remarque : Dire que $x \in [a - \delta, a + \delta]$ revient à dire que $|x - a| \le \delta$, dire que $x \in [A, +\infty[$ revient à dire que $x \ge A$, et dire que $x \in]-\infty, A]$ revient à dire que $x \le A$.

2 Limite d'une fonction

• Limite finie

Définition 2 Soit $f: I \to \mathbb{R}$ une fonction. Soit a un point de I ou une extrémité de I $(a \in \overline{\mathbb{R}})$. Soit b un réel. On dit que f admet b pour limite en a si, pour tout $\varepsilon > 0$, il existe un voisinage de a sur lequel on $a \mid f(x) - b \mid \leqslant \varepsilon$.

Si $a \in \mathbb{R}$, cela revient à dire que pour tout $\varepsilon > 0$, il existe un $\delta > 0$ tel que pour tout $x \in I \cap [a - \delta, a + \delta]$, on a $|f(x) - b| \leq \varepsilon$, ce que l'on peut écrire :

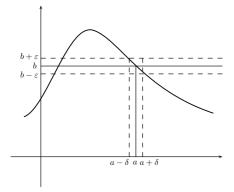
$$\forall \, \varepsilon > 0, \, \exists \, \delta > 0, \, \forall \, x \in I, (|x - a| \leqslant \delta \Rightarrow |f(x) - b| \leqslant \varepsilon).$$

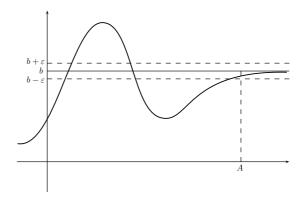
Si $a=+\infty$, cela revient à dire que pour tout $\varepsilon>0$, il existe un $A\in\mathbb{R}$ tel que pour tout $x\in I$ tel que $x\geqslant A$, on a $|f(x)-b|\leqslant \varepsilon$, ce que l'on peut écrire :

$$\forall \varepsilon > 0, \exists A \in \mathbb{R}, \forall x \in I, (x \geqslant A \Rightarrow |f(x) - b| \leqslant \varepsilon).$$

Si $a=-\infty$, cela revient à dire que pour tout $\varepsilon>0$, il existe un $A\in\mathbb{R}$ tel que pour tout $x\in I$ tel que $x\leqslant A$, on a $|f(x)-b|\leqslant \varepsilon$, ce que l'on peut écrire :

$$\forall \varepsilon > 0, \exists A \in \mathbb{R}, \forall x \in I, (x \leqslant A \Rightarrow |f(x) - b| \leqslant \varepsilon).$$





Proposition 1 Si b existe, il est unique. On l'appelle la limite de f en a et on note $\lim_{x\to a} f(x) = b$ ou simplement $\lim_{x\to a} f = b$, ou encore $f(x) \stackrel{x\to a}{\longrightarrow} b$.

Démonstration:

Supposons que f ait deux limites b_1 et b_2 en a, avec $b_1 \neq b_2$. Soit ε un réel tel que $0 < \varepsilon < \frac{|b_2 - b_1|}{2}$.

Si $a \in \mathbb{R}$

Il existe un $\delta_1 > 0$ tel que, pour tout $x \in I$, $|x - a| \le \delta_1$ implique $|f(x) - b_1| \le \varepsilon$, et il existe un $\delta_2 > 0$ tel que, pour tout $x \in I$, $|x - a| \le \delta_2$ implique $|f(x) - b_2| \le \varepsilon$.

Soit $\delta = \min(\delta_1, \delta_2)$. Si $|x - a| \le \delta$ on a donc à la fois $|f(x) - b_1| \le \varepsilon$ et $|f(x) - b_2| \le \varepsilon$. Mais alors $|b_2 - b_1| = |b_2 - f(x) + f(x) - b_1| \le |f(x) - b_2| + |f(x) - b_1| \le 2\varepsilon$. Or $\varepsilon < \frac{|b_2 - b_1|}{2}$ donc $2\varepsilon < |b_2 - b_1|$. On obtient ainsi $|b_2 - b_1| < |b_2 - b_1|$, ce qui est contradictoire.

 $Sia = 1\infty$

Il existe un $A_1 \in \mathbb{R}$ tel que, pour tout $x \in I$, $x \geqslant A_1$ implique $|f(x) - b_1| \leqslant \varepsilon$, et il existe un $A_2 \in \mathbb{R}$ tel que, pour tout $x \in I$, $x \geqslant A_2$ implique $|f(x) - b_2| \leqslant \varepsilon$.

Soit $A = \max(A_1, A_2)$. Si $x \ge A$ on a donc à la fois $|f(x) - b_1| \le \varepsilon$ et $|f(x) - b_2| \le \varepsilon$. Mais alors $|b_2 - b_1| = |b_2 - f(x) + f(x) - b_1| \le |f(x) - b_2| + |f(x) - b_2| + |f(x) - b_1| \le 2\varepsilon$. Or $\varepsilon < \frac{|b_2 - b_1|}{2}$ donc $2\varepsilon < |b_2 - b_1|$. On obtient ainsi $|b_2 - b_1| < |b_2 - b_1|$, ce qui est contradictoire. \square

Remarques:

- 1) On peut toujours se ramener à une limite nulle : $\lim_{x\to a} f(x) = b \Leftrightarrow \lim_{x\to a} (f(x)-b) = 0 \Leftrightarrow \lim_{x\to a} |f(x)-b| = 0$ (la définition de la limite est la même dans tous les cas).
- 2) Si a est un réel non nul, on peut se ramener à une limite en 0 en posant x = a + h: $\lim_{x \to a} f(x) = b \Leftrightarrow \lim_{h \to 0} f(a+h) = b$ (la définition de la limite est la même dans les deux cas).
- Limite infinie

Définition 3 Soit $f: I \to \mathbb{R}$ une fonction. Soit a un point de I ou une extrémité de I $(a \in \overline{\mathbb{R}})$. On dit que f admet $+\infty$ pour limite en a si, pour tout $A \in \mathbb{R}$, il existe un voisinage de a sur lequel on a $f(x) \geqslant A$.

On note alors $\lim_{x\to a} f(x) = +\infty$ ou $\lim_a f = +\infty$, ou encore $f(x) \xrightarrow{x\to a} +\infty$.

Si $a \in \mathbb{R}$, cela revient à dire que pour tout $A \in \mathbb{R}$, il existe un $\delta > 0$ tel que pour tout $x \in I \cap [a - \delta, a + \delta]$, on a $f(x) \ge A$, ce que l'on peut écrire :

$$\forall A \geqslant 0, \exists \delta > 0, \forall x \in I, (|x - a| \leqslant \delta \Rightarrow f(x) \geqslant A).$$

Si $a = +\infty$, cela revient à dire que pour tout $A \in \mathbb{R}$, il existe un $B \in \mathbb{R}$ tel que pour tout $x \in I$ tel que $x \geqslant B$, on a $f(x) \geqslant A$, ce que l'on peut écrire :

$$\forall A \in \mathbb{R}, \exists B \in \mathbb{R}, \forall x \in I, (x \geqslant B \Rightarrow f(x) \geqslant A).$$

Si $a = -\infty$, cela revient à dire que pour tout $A \in \mathbb{R}$, il existe un $B \in \mathbb{R}$ tel que pour tout $x \in I$ tel que $x \in B$, on a $f(x) \ge A$, ce que l'on peut écrire :

$$\forall A \in \mathbb{R}, \exists B \in \mathbb{R}, \forall x \in I, (x \leq B \Rightarrow f(x) \geq A).$$

Définition 4 Soit $f: I \to \mathbb{R}$ une fonction. Soit a un point de I ou une extrémité de I $(a \in \overline{\mathbb{R}})$. On dit que f admet $-\infty$ pour limite en a si, pour tout $A \in \mathbb{R}$, il existe un voisinage de a sur lequel on a $f(x) \leqslant A$.

On note alors $\lim_{x\to a} f(x) = -\infty$ ou $\lim_{x\to a} f = -\infty$, ou encore $f(x) \xrightarrow{x\to a} -\infty$.

3 Limite à gauche, limite à droite

Définition 5 Soit $f: I \to \mathbb{R}$ une fonction. Soit a un point de I ou une extrémité de I $(a \in \mathbb{R})$.

On dit que f admet une **limite à gauche en** a si la restriction de f à l'intervalle $I \cap]-\infty, a[$ admet une limite en a. Cette limite est alors notée $\lim_{a^-} f$ ou $\lim_{x \to a^-} f(x)$ ou encore $\lim_{\substack{x \to a \\ x < a}} f(x)$.

On dit que f admet une limite à droite en a si la restriction de f à l'intervalle $I \cap]a, +\infty[$ admet une limite en a. Cette limite est alors notée $\lim_{a^+} f$ ou $\lim_{x\to a^+} f(x)$ ou encore $\lim_{x\to a} f(x)$.

Proposition 2 Si $\lim_{x\to a} f(x) = b$, alors $\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) = b$.

Remarque : La réciproque est fausse. Considérons par exemple, la fonction f définie sur \mathbb{R} par f(x) = 0 si $x \neq 0$ et f(0) = 1. Alors $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = 0$, mais $\lim_{x \to 0} f(x)$ n'existe pas.

Définition 6 Soit $f: I \setminus \{a\} \to \mathbb{R}$ une fonction (où $a \in I$). On dit que f admet une limite en a si $f_{|I \cap]-\infty,a[}$ et $f_{|I \cap]a,+\infty[}$ admettent la même limite en a. Cette limite commune est alors appelée limite de f en a.

On peut ainsi écrire, par exemple, que $\lim_{x\to 0} \frac{\sin x}{x} = 1$ alors que la fonction $x\mapsto \frac{\sin x}{x}$ n'est pas définie en 0.

4 Propriétés

Proposition 3 Si f admet une limite finie en a $(a \in \overline{\mathbb{R}})$, alors f est bornée au voisinage de a.

Démonstration:

Supposons que $a \in \mathbb{R}$. Soit b la limite de f en a. Par définition de la limite avec $\varepsilon = 1$, il existe un $\delta > 0$ tel que, pour tout $x \in I$ tel que $|x - a| \le \delta$, on a $|f(x) - b| \le 1$, soit $b - 1 \le f(x) \le b + 1$: la fonction est donc bornée sur $I \cap [a - \delta, a + \delta]$.

Supposons que $a=+\infty$. Soit b la limite de f en a. Par définition de la limite avec $\varepsilon=1$, il existe un $A\geqslant 0$ tel que, pour tout $x\in I$ tel que $x\geqslant A$, on a $|f(x)-b|\leqslant 1$, soit $b-1\leqslant f(x)\leqslant b+1$: la fonction est donc bornée sur $I\cap [A,+\infty[$. \Box

Proposition 4 Si f admet $b \in \mathbb{R}_+^* \cup \{+\infty\}$ pour limite en a, alors, pour tout réel c tel que 0 < c < b, il existe un voisinage de a sur lequel on a f(x) > c.

En particulier, f prend des valeurs strictement positives au voisinage de a.

Démonstration: Il suffit d'appliquer la définition de la limite (avec $\varepsilon = b - c$ si b est réel). \square

5 Opérations sur les limites

• Limites finies

Dans toutes les propositions suivantes, f et g sont des fonctions définies sur I et a est un point de I ou une extrémité de I ($a \in \mathbb{R}$). Les démonstrations sont faites dans le cas où $a \in \mathbb{R}$.

Proposition 5 Soient $b_1, b_2 \in \mathbb{R}$. Si $\lim_a f = b_1$ et que $\lim_a g = b_2$, alors $\lim_a (f+g) = b_1 + b_2$.

Démonstration:

Soit $\varepsilon > 0$. Par définition de la limite (appliquée à $\frac{\varepsilon}{2}$), il existe un $\delta_1 > 0$ tel que, pour tout $x \in I$, $|x - a| \le \delta_1$ implique $|f(x) - b_1| \le \frac{\varepsilon}{2}$ et il existe un $\delta_2 > 0$ tel que, pour tout $x \in I$, $|x - a| \le \delta_2$ implique $|g(x) - b_2| \le \frac{\varepsilon}{2}$.

Soit $\delta = \min(\delta_1, \delta_2)$. Si $|x - a| \leqslant \delta$, on a alors $|f(x) + g(x) - (b_1 + b_2)| = |(f(x) - b_1) + (g(x) - b_2)| \leqslant |f(x) - b_1| + |g(x) - b_2| \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \leqslant \varepsilon$. \square

Proposition 6 Soient $\alpha \in \mathbb{R}$ et $b \in \mathbb{R}$. Si $\lim_{a} f = b$ alors $\lim_{a} (\alpha f) = \alpha b$.

Démonstration :

Si $\alpha=0$ c'est immédiat. Supposons $\alpha\neq 0$. Soit $\varepsilon>0$. Par définition de la limite (appliquée à $\frac{\varepsilon}{|\alpha|}$), il existe un $\delta>0$ tel que, pour tout $x\in I, \ |x-a|\leqslant \delta$ implique $|f(x)-b|\leqslant \frac{\varepsilon}{|\alpha|}$, et donc $|\alpha f(x)-\alpha b|=|\alpha|.|f(x)-b|\leqslant |\alpha|\frac{\varepsilon}{|\alpha|}\leqslant \varepsilon$. \square

Proposition 7 Si $\lim_{a} f = 0$ et que la fonction g est bornée au voisinage de a, alors $\lim_{a} (f \times g) = 0$.

Démonstration :

La fonction g est bornée au voisinage de a, donc il existe $\delta_1>0$ et M>0 tels que, pour tout $x\in I, |x-a|\leqslant \delta_1$ implique $|g(x)|\leqslant M$. Soit $\varepsilon>0$. Par définition de la limite (appliquée à $\frac{\varepsilon}{M}$), il existe un $\delta_2>0$ tel que, pour tout $x\in I, |x-a|\leqslant \delta_2$ implique $|f(x)|\leqslant \frac{\varepsilon}{M}$. Soit $\delta=\min(\delta_1,\delta_2)$. Si $|x-a|\leqslant \delta$, on a alors $|f(x)g(x)|=|f(x)|\times |g(x)|\leqslant M\frac{\varepsilon}{M}\leqslant \varepsilon$. \square

Corollaire 8 Soient $b_1, b_2 \in \mathbb{R}$. Si $\lim_a f = b_1$ et que $\lim_a g = b_2$, alors $\lim_a (f \times g) = b_1 \times b_2$.

Démonstration :

On a $f(x)g(x) - b_1b_2 = f(x)g(x) - b_1g(x) + b_1g(x) - b_1b_2 = (f(x) - b_1)g(x) + b_1(g(x) - b_2)$. Or $\lim_{x \to a} (f(x) - b_1) = 0$ et g est bornée au voisinage de a (car elle a une limite finie en a), donc $\lim_{x \to a} (f(x) - b_1)g(x) = 0$. D'autre part, $\lim_{x \to a} (g(x) - b_2) = 0$, donc $\lim_{x \to a} b_1(g(x) - b_2) = 0$. Par conséquent $\lim_{x \to a} (f(x)g(x) - b_1b_2) = 0$. \square

Proposition 9 $Si \lim_{a} f = b \in \mathbb{R}^{*}$, $alors \lim_{a} \frac{1}{f} = \frac{1}{b}$.

Démonstration :

Puisque $b \neq 0$, il existe, d'après la proposition 4, un voisinage de a sur lequel f ne s'annule pas, donc sur lequel $\frac{1}{f}$ est définie.

Supposons b > 0. Soit c un réel tel que 0 < c < b. D'après la même proposition, il existe un $\delta_1 > 0$ tel que, pour tout $x \in I$, $|x - a| \le \delta_1$ implique f(x) > c.

Soit $\varepsilon > 0$. Il existe un $\delta_2 > 0$ tel que, pour tout $x \in I$, $|x - a| \le \delta_2$ implique $|f(x) - b| \le bc\varepsilon$.

Soit
$$\delta = \min(\delta_1, \delta_2)$$
. Si $|x - a| \le \delta$, on a alors $\left| \frac{1}{f(x)} - \frac{1}{b} \right| = \left| \frac{b - f(x)}{b f(x)} \right| = \frac{|f(x) - b|}{b f(x)} \le \frac{b c \varepsilon}{b c} \le \varepsilon$. \square

Corollaire 10 Si $\lim_a f = b_1$ et que $\lim_a g = b_2 \in \mathbb{R}^*$, alors $\lim_a \frac{f}{g} = \frac{b_1}{b_2}$.

• Limites infinies

On admet les résultats figurant dans les tableaux suivants. FI signifie forme indéterminée.

$\lim_{a} f$	$\lim_a g$	$\lim_{a} (f+g)$
$\ell \in \mathbb{R}$	$+\infty$	+∞
$\ell \in \mathbb{R}$	$-\infty$	$-\infty$
$+\infty$	$+\infty$	+∞
$-\infty$	$-\infty$	$-\infty$
$+\infty$	$-\infty$	FI

$\lim_{a} f$	$\lim_{a} g$	$\lim_{a} (f \times g)$
$\ell > 0$	$+\infty$	$+\infty$
$\ell < 0$	$+\infty$	$-\infty$
$+\infty$	$+\infty$	+∞
$-\infty$	$-\infty$	$+\infty$
$+\infty$	$-\infty$	$-\infty$
0	±∞	FI

$\lim_{a} f$	$\lim_a g$	$\lim_{a} \frac{f}{g}$
$\ell \in \mathbb{R}$	$\pm \infty$	0
$+\infty$	$\ell > 0$	$+\infty$
+∞	0+	$+\infty$
$\ell > 0$	0+	+∞
0	0	FI
$\pm \infty$	$\pm \infty$	FI

6 Limite d'une fonction composée

Proposition 11 Soient $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ deux fonctions telles que $f(I) \subset J$. Soient $a, b, c \in \overline{\mathbb{R}}$. Si $\lim_a f = b$ et que $\lim_b g = c$, alors $\lim_a g \circ f = c$.

Démonstration:

Il y a de nombreux cas à traiter selon que a, b et c sont finis ou non. Supposons par exemple que $a, b, c \in \mathbb{R}$.

Soit $\varepsilon > 0$. $\lim_{y \to b} g(y) = c$ donc il existe un $\delta > 0$ tel que, pour tout $y \in J$, $|y - b| \le \delta$ implique $|g(y) - c| \le \varepsilon$. De même, $\lim_{x \to a} f(x) = b$ donc il existe un $\gamma > 0$ tel que, pour tout $x \in I$, $|x - a| \le \gamma$ implique $|f(x) - b| \le \delta$. Par conséquent, si $|x - a| \le \gamma$, alors $|g(f(x)) - c| \le \varepsilon$. \square

Exemple : Soit à calculer $\lim_{x \to +\infty} e^{\frac{1}{x}}$. On a $\lim_{x \to +\infty} \frac{1}{x} = 0$ et $\lim_{y \to 0} e^y = 1$, donc $\lim_{x \to +\infty} e^{\frac{1}{x}} = 1$.

7 Caractérisation séquentielle de la limite

Proposition 12 Soient $f: I \to \mathbb{R}$ une fonction et $a, b \in \overline{\mathbb{R}}$. La fonction f tend vers b en a si et seulement si pour toute suite (u_n) d'éléments de I qui tend vers a, la suite $(f(u_n))$ tend vers b.

Autrement dit:

$$\lim_{x \to a} f(x) = b \Leftrightarrow \forall (u_n) \in I^{\mathbb{N}}, \left(\lim_{n \to +\infty} u_n = a \Rightarrow \lim_{n \to +\infty} f(u_n) = b\right).$$

Démonstration : (Dans le cas où $a,b \in \mathbb{R}$)

 (\Rightarrow) Supposons que $\lim_{x\to a} f(x) = b$. Soit (u_n) une suite d'éléments de I telle que $\lim_{n\to +\infty} u_n = a$. Montrons que $\lim_{n\to +\infty} f(u_n) = b$.

Soit $\varepsilon > 0$. Puisque $\lim_{x \to a} f(x) = b$, il existe $\delta > 0$ tel que, pour tout $x \in I$, $|x - a| \le \delta$ implique $|f(x) - b| \le \varepsilon$. De plus, $\lim_{n \to +\infty} u_n = a$ donc il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$ on a $|u_n - a| \le \delta$.

Si $n \ge n_0$, on a donc $|f(u_n) - b| \le \varepsilon$.

 (\Leftarrow) Supposons que pour toute suite (u_n) d'éléments de I telle que $\lim_{n\to+\infty}u_n=a$, on a $\lim_{n\to+\infty}f(u_n)=b$. Montrons que $\lim_{x\to a}f(x)=b$. Soit $\varepsilon>0$. On veut montrer :

(*) $\exists \delta > 0, \forall x \in I, (|x - a| \leqslant \delta \Rightarrow |f(x) - b| \leqslant \varepsilon).$

Supposons le contraire, i.e. :

$$\forall \delta > 0, \exists x \in I, (|x - a| \leq \delta \text{ et } |f(x) - b| > \varepsilon).$$

Soit $n \in \mathbb{N}^*$. En prenant $\delta = \frac{1}{n}$ dans ce qui précède, on voit qu'il existe un $x_n \in I$ tel que $|x_n - a| \leq \frac{1}{n}$ et $|f(x_n) - b| > \varepsilon$. On construit ainsi une suite (x_n) d'éléments de I.

Pour tout $n \in \mathbb{N}^*$ on a $|x_n - a| \leq \frac{1}{n}$ donc la suite (x_n) converge vers a, mais $|f(x_n) - b| > \varepsilon$ donc la suite $(f(x_n))$ ne converge pas vers b, ce qui contredit notre première hypothèse. Ainsi (*) est vérifié. \square

Remarques:

1) On utilisera plus fréquemment cette proposition dans le sens direct. Par exemple $\lim_{n \to +\infty} \sin \frac{1}{n} = 0$ car $\lim_{n \to +\infty} \frac{1}{n} = 0$ et $\lim_{x \to 0} \sin x = 0$. De même $\lim_{n \to +\infty} n \sin \frac{1}{n} = \lim_{n \to +\infty} \frac{\sin \frac{1}{n}}{\frac{1}{n}} = 1$ car $\lim_{n \to +\infty} \frac{1}{n} = 0$ et $\lim_{x \to 0} \frac{\sin x}{x} = 1$ (limite usuelle).

2) Pour montrer qu'une fonction f n'a pas de limite en a, on peut essayer de trouver deux suites (u_n) et (v_n) qui tendent vers a et telles que les suites $(f(u_n))$ et $(f(v_n))$ tendent vers des limites différentes.

Montrons par exemple que la fonction cosinus n'a pas de limite en $+\infty$. Considérons les suites de termes généraux $u_n = 2n\pi$ et $v_n = (2n+1)\pi$. Ces deux suites tendent vers $+\infty$, mais $\lim_{n \to +\infty} \cos(u_n) = 1$ alors que $\lim_{n \to +\infty} \cos(v_n) = -1$. Si la fonction cosinus avait une limite ℓ en $+\infty$, alors les suites $(\cos(u_n))$ et $(\cos(v_n))$ tendraient aussi vers ℓ . Par conséquent, $\lim_{x \to +\infty} \cos x$ n'existe pas.

8 Limites et relation d'ordre

• Passage à la limite

Proposition 13 Si $\lim_a f = b_1$, que $\lim_a g = b_2$ ($a \in \overline{\mathbb{R}}$, $b_1, b_2 \in \mathbb{R}$) et que $f \leqslant g$ au voisinage de a, alors $b_1 \leqslant b_2$.

Démonstration :

Si on avait $b_1 > b_2$, alors d'après la proposition 4 on aurait f(x) > g(x) au voisinage de a, ce qui est contraire aux hypothèses. \square

Remarques:

- 1) Pour pouvoir faire un passage à la limite, il faut avoir démontré auparavant que les limites existent.
- 2) Un passage à la limite donne toujours une inégalité au sens large. Si on a f < g au voisinage de a, on ne peut pas en déduire que $b_1 < b_2$ (considérer par exemple $f: x \mapsto 0$ et $g: x \mapsto \frac{1}{x}$ en $+\infty$).
- Théorème des gendarmes

Proposition 14 Soient $f, g, h: I \to \mathbb{R}$ trois fonctions telles que $f \leqslant g \leqslant h$ au voisinage de $a \ (a \in \overline{\mathbb{R}})$. Si $\lim_a f = \lim_a h = b \ (b \in \mathbb{R})$, alors $\lim_a g = b$ également.

Démonstration :

Supposons que $a \in \mathbb{R}$. Soit $\varepsilon > 0$. Il existe un $\delta_1 > 0$ tel que, pour tout $x \in I$, $|x - a| \le \delta_1$ implique $|f(x) - b| \le \varepsilon$. Il existe un $\delta_2 > 0$ tel que, pour tout $x \in I$, $|x - a| \le \delta_2$ implique $|h(x) - b| \le \varepsilon$. Enfin, par hypothèse, il existe un $\delta_3 > 0$ tel que, pour tout $x \in I$, $|x - a| \le \delta_3$ implique $f(x) \le g(x) \le h(x)$.

Soit $\delta = \min(\delta_1, \delta_2, \delta_3)$. Si $|x - a| \le \delta$, on a alors $f(x) - b \le g(x) - b \le h(x) - b$, donc $-\varepsilon \le g(x) - b \le \varepsilon$, soit $|g(x) - b| \le \varepsilon$.

La démonstration est analogue si $a=\pm\infty$. \square

Autres versions:

Proposition 15 Soient $f, g: I \to \mathbb{R}$ deux fonctions telles que $|f| \leq g$ au voisinage de a ($a \in \overline{\mathbb{R}}$). Si $\lim_{a} g = 0$, alors $\lim_{a} f = 0$.

Démonstration : Il suffit d'écrire que $-g \le f \le g$ et d'appliquer le résultat précédent. \square

Proposition 16 Soient $f, g: I \to \mathbb{R}$ deux fonctions telles que $f \leq g$ au voisinage de a $(a \in \overline{\mathbb{R}})$. Si $\lim_a f = +\infty$, alors $\lim_a g = +\infty$. Si $\lim_a g = -\infty$, alors $\lim_a f = -\infty$.

9 Limite d'une fonction monotone

Théorème 17 (Théorème de la limite monotone) Soit $f: [a,b] \to \mathbb{R}$ une fonction croissante $(a,b \in \mathbb{R})$. Alors:

- (i) Si f est majorée, f admet une limite finie en b (égale à $\sup_{[a,b[} f)$. Sinon, $\lim_b f = +\infty$.
- (ii) Si f est minorée, f admet une limite finie en a (égale à $\inf_{]a,b[}f$). Sinon, $\lim_a f = -\infty$.
- (iii) f admet une limite finie à gauche et à droite en tout point de l'intervalle]a, b[.

Démonstration :

(i) Supposons que f est majorée. Alors $s=\sup_{]a,b[}f$ existe. Montrons que $\lim_b f=s.$

Soit $\varepsilon > 0$. Le plus petit majorant de f est s donc $s - \varepsilon$ n'est pas un majorant de f. Il existe donc $x_0 \in]a, b[$ tel que $s - \varepsilon \leqslant f(x_0)$. Or la fonction f est croissante, donc pour tout $x \in]x_0, b[$, on a $s - \varepsilon \leqslant f(x_0) \leqslant f(x) \leqslant s$.

Ainsi, si $b \in \mathbb{R}$, en posant $\delta = b - x_0$, on voit que pour tout $x \in]a, b[$, si $|x - b| \le \delta$, alors $|f(x) - s| \le \varepsilon$. Si $b = +\infty$, on voit que pour tout $x \in]a, b[$, si $x \ge x_0$, alors $|f(x) - s| \le \varepsilon$. Dans les deux cas, cela signifie que $\lim_{t \to 0} f = s$.

Supposons maintenant que f n'est pas majorée et montrons que $\lim_{n \to \infty} f = +\infty$.

Soit $A \in \mathbb{R}$. Puisque f n'est pas majorée, il existe $x_0 \in]a,b[$ tel que $f(x_0) \geqslant A$. Or la fonction f est croissante, donc pour tout $x \in]x_0,b[$, on a $f(x) \geqslant A$.

Ainsi, si $b \in \mathbb{R}$, en posant $\delta = b - x_0$, on voit que pour tout $x \in]a, b[$, si $|x - b| \le \delta$, alors $f(x) \ge A$. Si $b = +\infty$, on voit que pour tout $x \in]a, b[$, si $x \ge x_0$, alors $f(x) \ge A$. Dans les deux cas, cela signifie que $\lim_{t \to \infty} f(x) \ge A$.

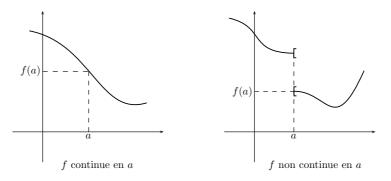
Le (ii) est analogue au (i), et pour le (iii) il suffit d'appliquer le (i) à $f_{|a,c|}$ (qui est majorée par f(c)) et le (ii) à $f_{|a,c|}$ (qui est minorée par f(c)) où $c \in a, b \in a$

Remarque: On peut évidemment énoncer un théorème analogue pour les fonctions décroissantes.

II Continuité

1 Continuité en un point

Définition 7 Soit $f: I \to \mathbb{R}$ une fonction. Soit a un point de I. On dit que f est continue en a si $\lim_{x \to a} f(x) = f(a)$.



Exemple : La fonction partie entière $x\mapsto E(x)$ est continue en tout point non entier, mais elle est discontinue en tout point entier. En effet, si $p\in\mathbb{Z}$, alors $\lim_{x\to p^+} E(x)=p$ alors que $\lim_{x\to p^-} E(x)=p-1$, donc $\lim_{x\to p} E(x)$ n'existe pas.

Remarque : Si une fonction f est définie en un point a et qu'elle admet une limite finie en a, cette limite est nécessairement égale à f(a) (preuve : prendre x = a dans la définition de la limite). Par conséquent elle est continue en a.

2 Continuité à gauche, continuité à droite

Définition 8 Soit $f: I \to \mathbb{R}$ une fonction. Soit a un point de I. On dit que f est continue à gauche en a si la restriction de f à $I \cap]-\infty,a]$ est continue en a. On dit que f est continue à droite en a si la restriction de f à $I \cap [a,+\infty[$ est continue en a.

Autrement dit, f est continue à gauche en a si $\lim_{x\to a^-} f(x) = f(a)$ et elle est continue à droite en a si $\lim_{x\to a^+} f(x) = f(a)$.

Exemple: En tout $p \in \mathbb{Z}$ la fonction partie entière est continue à droite mais pas à gauche.

Proposition 18 f est continue en a si et seulement si elle est continue à gauche et à droite en a.

3 Prolongement par continuité en un point

Définition 9 Soit $f: I \to \mathbb{R}$ une fonction. Soit $a \in \mathbb{R}$ une extrémité de I qui n'appartient pas à I. On dit que f est **prolongeable par continuité en** a si elle admet une limite finie en a.

En posant f(a) égal à cette limite, on prolonge alors f en une fonction définie sur $I \cup \{a\}$ (que l'on note encore f en général) qui est continue en a.

Exemple : Soit la fonction f définie sur \mathbb{R}^* par $f(x) = \frac{\sin x}{x}$. On sait que $\lim_{x \to 0} f(x) = 1$ (limite usuelle), donc f est prolongeable par continuité en 0. En posant f(0) = 1 on obtient une fonction définie sur \mathbb{R} par $f(x) = \begin{cases} \frac{\sin x}{x} & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{cases}$ qui est continue en 0.

4 Continuité sur un intervalle

Définition 10 $f: I \to \mathbb{R}$ est continue sur I si elle est continue en tout point de I.

Interprétation graphique : f est continue sur I si on peut tracer sa courbe représentative sans lever le crayon.

L'ensemble des fonctions continues sur I est noté $\mathcal{C}(I,\mathbb{R})$ ou simplement $\mathcal{C}(I)$.

5 Opérations sur les fonctions continues

Proposition 19 Soient $f, g: I \to \mathbb{R}$ deux fonctions.

- (i) Soit $a \in I$. Si f et g sont continues en a, alors f + g, αf (où $\alpha \in \mathbb{R}$) et $f \times g$ sont continues en a. Si, de plus, $g(a) \neq 0$, alors $\frac{f}{g}$ est continue en a.
- (ii) Si f et g sont continues sur I, alors f+g, αf (où $\alpha \in \mathbb{R}$) et $f \times g$ sont continues sur I. Si, de plus, g ne s'annule pas sur I, alors $\frac{f}{g}$ est continue sur I.

Démonstration : Conséquences des théorèmes sur les limites. \square

On en déduit que les fonctions polynomiales sont continues sur \mathbb{R} , et que les fonctions rationnelles (quotients de deux fonctions polynomiales) sont continues là où elles sont définies.

Proposition 20 Soient $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ deux fonctions telles que $f(I) \subset J$.

- (i) Soit $a \in I$. Si f est continue en a et que g est continue en f(a), alors $g \circ f$ est continue en a.
- (ii) Si f continue sur I et que g est continue sur J, alors $g \circ f$ est continue sur I.

Démonstration : Conséquence du théorème sur la limite d'une fonction composée. \Box

Les fonctions usuelles étudiées au chapitre 4 sont toutes continues là où elles sont définies. Les fonctions formées à partir de ces fonctions au moyen des opérations précédentes le sont donc aussi.

Exercice 1 Étudier la continuité de la fonction f définie sur [0,1] par $f(x) = \frac{x}{\ln x}$ si 0 < x < 1, f(0) = 0 et f(1) = 0.

Proposition 21 Soient $f: I \to \mathbb{R}$ une fonction et (u_n) une suite d'éléments de I. Soit $a \in I$. Si f est continue en a et que la suite (u_n) converge vers a, alors la suite $(f(u_n))$ converge vers f(a).

 ${f D\acute{e}monstration}:$ Conséquence de la caractérisation séquentielle de la limite (proposition 12). \square

Remarques:

- 1) Sans la continuité le théorème est faux. Par exemple, $\lim_{n\to+\infty} \left\lfloor -\frac{1}{n} \right\rfloor = -1$ et non 0.
- 2) On utilise fréquemment cette proposition pour déterminer la limite d'une suite définie par une relation de la forme $u_{n+1} = f(u_n)$: si la suite (u_n) converge vers ℓ et que f est continue en ℓ , alors $\ell = f(\ell)$.

6 Théorème des valeurs intermédiaires

Proposition 22 Soit $f:[a,b] \to \mathbb{R}$ une fonction. Si f est continue sur [a,b] et que f(a) et f(b) sont de signes contraires, alors il existe $c \in [a,b]$ tel que f(c) = 0.

Démonstration :

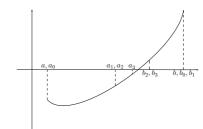
Supposons par exemple que $f(a) \leq 0 \leq f(b)$.

On définit deux suites (a_n) et (b_n) par récurrence de la manière suivante.

On pose d'abord $\left\{ \begin{array}{ll} a_0=a\\ b_0=b \end{array} \right..$

Ensuite, pour tout $n \in \mathbb{N}$, on pose $c_n = \frac{a_n + b_n}{2}$ et on regarde le signe de $f(c_n)$.

Si $f(c_n) < 0$, alors on pose $\left\{ \begin{array}{l} a_{n+1} = c_n \\ b_{n+1} = b_n \end{array} \right.$, sinon on pose $\left\{ \begin{array}{l} a_{n+1} = a_n \\ b_{n+1} = c_n \end{array} \right.$



Par récurrence immédiate on voit que $b_n - a_n = \frac{b-a}{2^n}$ pour tout n. Par conséquent $\lim_{n \to +\infty} (b_n - a_n) = 0$.

De plus, la suite (a_n) est croissante puisque pour tout n, on a soit $a_{n+1}=a_n$, soit $a_{n+1}=\frac{a_n+b_n}{2}\geqslant \frac{a_n+a_n}{2}=a_n$, et la suite (b_n) est décroissante puisque pour tout n, on a soit $b_{n+1}=b_n$, soit $b_{n+1}=\frac{a_n+b_n}{2}\leqslant \frac{b_n+b_n}{2}=b_n$.

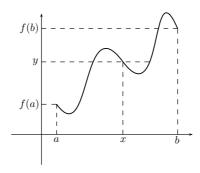
Les suites (a_n) et (b_n) sont donc adjacentes. Par conséquent elles convergent vers la même limite. Notons-la c. On a $c \in [a,b]$ et, puisque f est continue, les suites $(f(a_n))$ et $(f(b_n))$ convergent vers f(c). Or, par construction, on a $f(a_n) \le 0$ et $f(b_n) \ge 0$ pour tout n, donc en passant à la limite on obtient $f(c) \le 0$ et $f(c) \ge 0$, d'où f(c) = 0. \square

Remarques:

- 1) c n'est pas forcément unique.
- 2) Sans la continuité le théorème est faux : considérer par exemple la fonction f définie sur [0,2] par f(x)=1 si $0 \le x < 1$ et f(x)=-1 si $1 \le x \le 2$.
- 3) La méthode utilisée dans la démonstration s'appelle la dichotomie.

Théorème 23 (Théorème des valeurs intermédiaires) Soit $f:[a,b] \to \mathbb{R}$ une fonction. Si f est continue sur [a,b], alors pour tout y compris entre f(a) et f(b), il existe $x \in [a,b]$ tel que f(x) = y.

Autrement dit, toutes les valeurs comprises entre f(a) et f(b) sont atteintes par f.



Démonstration : Appliquer la proposition précédente à la fonction $x\mapsto f(x)-y$. \square

7 Image d'un intervalle par une fonction continue

Proposition 24 L'image d'un intervalle par une fonction continue est un intervalle.

Démonstration :

Soit I un intervalle et f une fonction continue sur I. On va montrer que, pour tous $a,b \in f(I)$, le segment [a,b] est inclus dans f(I). Soient $a,b \in f(I)$. Il existe donc $x,y \in I$ tels que f(x) = a et f(y) = b. Mais alors, pour tout $c \in [a,b]$, d'après le théorème des valeurs intermédiaires, il existe $z \in [x,y]$ tel que f(z) = c. Or $[x,y] \subset I$, donc $z \in I$, et donc $c \in f(I)$. \square

Remarque : Attention : l'image d'un intervalle par une fonction continue n'est pas forcément un intervalle de même nature. Par exemple, l'image de l'intervalle]-1,2] par la fonction $x\mapsto x^2$ est l'intervalle [0,4]. L'image de l'intervalle $]-\infty,+\infty[$ par la fonction sinus est l'intervalle [-1,1].

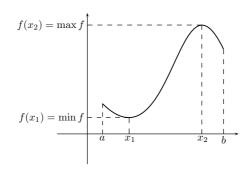
On a cependant le résultat suivant (que l'on admet):

Proposition 25 L'image d'un segment par une fonction continue est un segment.

Attention : en général, f([a,b]) n'est pas égal à [f(a),f(b)]. Par exemple, l'image de l'intervalle [-2,2] par la fonction $x \mapsto x^2$ est l'intervalle [0,4] et non l'intervalle [4,4].

Corollaire 26 (Théorème des bornes atteintes) Toute fonction continue sur un segment [a, b] est bornée sur [a, b], et elle atteint ses bornes.

Cela signifie qu'il existe $x_1, x_2 \in [a, b]$ tels que $f(x_1) = \inf_{[a, b]} f$ et $f(x_2) = \sup_{[a, b]} f$.



8 Fonction réciproque d'une fonction continue strictement monotone

Proposition 27 Si f est une fonction continue et strictement monotone sur I, alors f définit une bijection de I dans J = f(I), et sa réciproque f^{-1} est continue et strictement monotone sur J, de même monotonie que f.

Démonstration:

On suppose que f est strictement croissante.

 $f: I \to J$ est surjective car J = f(I). Montrons qu'elle est injective. Soient $y \in J$ et soient $x_1, x_2 \in I$ deux antécédents de y par f. Si $x_1 < x_2$, alors $f(x_1) < f(x_2)$, soit y < y: impossible. Si $x_1 > x_2$, alors $f(x_1) > f(x_2)$, soit y > y: impossible. Par conséquent $x_1 = x_2$. f est donc injective.

Montrons ensuite que f^{-1} est strictement croissante. Soient $y_1, y_2 \in J$ avec $y_1 < y_2$. Soient $x_1 = f^{-1}(y_1)$ et $x_2 = f^{-1}(y_2)$. Si on avait $x_1 \ge x_2$ alors on aurait $f(x_1) \ge f(x_2)$, soit $y_1 \ge y_2$: impossible. Par conséquent, $x_1 < x_2$. f^{-1} est donc strictement croissante.

Montrons enfin que f^{-1} est continue. Soit $b \in J$ et soit $a = f^{-1}(b)$. Soit $\varepsilon > 0$. Alors, pour tout $y \in J$:

$$|f^{-1}(y) - f^{-1}(b)| \le \varepsilon \Leftrightarrow a - \varepsilon \le f^{-1}(y) \le a + \varepsilon \Leftrightarrow f(a - \varepsilon) \le y \le f(a + \varepsilon),$$

en supposant que $a-\varepsilon$ et $a+\varepsilon$ sont dans I, sinon on a immédiatement $a-\varepsilon\leqslant f^{-1}(y)$ (resp. $f^{-1}(y)\leqslant a+\varepsilon$).

Posons donc $\delta = \min(b - f(a - \varepsilon), f(a + \varepsilon) - b)$. Alors si $|y - b| \leq \delta$, on a $b - \delta \leq y \leq b + \delta$, d'où $f(a - \varepsilon) \leq y \leq f(a + \varepsilon)$, et donc $|f^{-1}(y) - f^{-1}(b)| \leq \varepsilon$. \square

Corollaire 28 Si f est continue et strictement monotone sur [a,b] et que f(a) et f(b) sont de signes contraires, alors il existe un unique $c \in [a,b]$ tel que f(c) = 0.

Démonstration:

Par le théorème des valeurs intermédiaires, 0 admet un antécédent par f. De plus, f est bijective, donc cet antécédent est unique. \square

III Notions sur les fonctions à valeurs complexes

1 Définitions

On considère ici des fonctions définies sur un intervalle I de $\mathbb R$ à valeurs dans $\mathbb C$.

On note $\mathcal{F}(I,\mathbb{C})$ ou \mathbb{C}^I l'ensemble des fonctions de ce type.

Définition 11 Soit $f: I \to \mathbb{C}$ une fonction à valeurs complexes. La partie réelle de f est la fonction $\operatorname{Re} f: I \to \mathbb{R}$ définie par $(\operatorname{Re} f)(x) = \operatorname{Re}(f(x))$. La partie imaginaire de f est la fonction $\operatorname{Im} f: I \to \mathbb{R}$ définie par $(\operatorname{Im} f)(x) = \operatorname{Im}(f(x))$. La fonction conjuguée de f est la fonction $\overline{f}: I \to \mathbb{C}$ définie par $\overline{f}(x) = \overline{f(x)}$.

Exemple : Soit $f(x) = (3+ix)e^{x-ix^2}$. On peut écrire $f(x) = (3+ix)e^x e^{-ix^2} = e^x (3+ix)(\cos x^2 - i\sin x^2)$, donc $(\text{Re } f)(x) = e^x (3\cos x^2 + x\sin x^2)$ et $(\text{Im } f)(x) = e^x (x\cos x^2 - 3\sin x^2)$. Par ailleurs, $\overline{f}(x) = (3-ix)e^{x+ix^2}$.

Il n'y a pas d'ordre dans \mathbb{C} , donc on ne peut pas parler ici de fonction majorée ou minorée. En revanche on peut définir la notion de fonction bornée :

Définition 12 $f: I \to \mathbb{C}$ est bornée s'il existe un réel positif M tel que $|f(x)| \leq M$ pour tout $x \in I$.

Dans le plan complexe, cela revient à dire que les images par f des éléments de I appartiennent au disque de centre O et de rayon M.

Proposition 29 $f: I \to \mathbb{C}$ est bornée si et seulement si sa partie réelle et sa partie imaginaire sont bornées.

2 Limite d'une fonction à valeurs complexes

Définition 13 Soit $f: I \to \mathbb{C}$ une fonction. Soit a un point de I ou une extrémité de I $(a \in \overline{\mathbb{R}})$. Soit b un complexe. On dit que f admet b pour limite en a si, pour tout $\varepsilon > 0$, il existe un voisinage de a sur lequel on $a \mid f(x) - b \mid \leqslant \varepsilon$.

La définition est la même que pour les fonctions à valeurs réelles en remplaçant la valeur absolue par le module.

Proposition 30 Si b existe, il est unique. On l'appelle la limite de f en a et on note $\lim_{x\to a} f(x) = b$ ou simplement $\lim_{x\to a} f(x) = b$ ou simplement $\lim_{x\to a} f(x) = b$.

On peut définir la notion de limite à gauche et à droite en un point, mais écrire que $\lim_a f = +\infty$ ou $-\infty$ n'a aucun sens pour une fonction à valeurs complexes puisqu'il n'y a pas d'ordre dans \mathbb{C} .

Les propositions suivantes permettent de se ramener à des limites réelles.

Proposition 31 $\lim_{a} f = b$ si et seulement si $\lim_{a} |f - b| = 0$.

Proposition 32 $f: I \to \mathbb{C}$ admet une limite en a si et seulement si $\operatorname{Re} f$ et $\operatorname{Im} f$ admettent une limite en a. Dans ce cas, $\lim_a f = \lim_a (\operatorname{Re} f) + i \lim_a (\operatorname{Im} f)$.

 $\textbf{D\'{e}monstration:} \text{ Utiliser la proposition pr\'{e}c\'{e}dente, les in\'{e}galit\'{e}s \mid \operatorname{Re} z \mid \leqslant |z| \text{ et } |\operatorname{Im} z| \leqslant |z| \text{ et } |\operatorname{'\'{e}galit\'{e}} \mid z| = \sqrt{\operatorname{Re}^2 z + \operatorname{Im}^2 z}. \ \Box$

Proposition 33 Si $\lim_{a} f = b_1$ et que $\lim_{a} g = b_2$, alors $\lim_{a} (f+g) = b_1 + b_2$, $\lim_{a} \alpha f = \alpha b_1$ (où $\alpha \in \mathbb{C}$), et $\lim_{a} fg = b_1 b_2$. Si $b_2 \neq 0$, alors $\lim_{a} \frac{f}{g} = \frac{b_1}{b_2}$.

Démonstration : Passer aux parties réelle et imaginaire. \square

Proposition 34 Si $f: I \to \mathbb{C}$ admet une limite finie en a, alors f est bornée au voisinage de a.

Démonstration : Passer aux parties réelle et imaginaire. \Box

Remarque: Les propositions portant sur les fonctions à valeurs réelles qui font intervenir la relation d'ordre (passage à la limite, théorème des gendarmes, limite d'une fonction monotone) ne sont plus valables dans $\mathbb C$ puisqu'il n'y a pas d'ordre.

3 Continuité

Définition 14 $f: I \to \mathbb{C}$ est continue en $a \in I$ si $\lim_{x \to a} f(x) = f(a)$. f est continue sur I si elle est continue en tout point de I.

On note $\mathcal{C}(I,\mathbb{C})$ l'ensemble des fonctions continues sur I.

D'après les théorèmes sur les limites :

Proposition 35 $f: I \to \mathbb{C}$ est continue en a (resp. sur I) si Re f et Im f sont continues en a (resp. sur I).

Proposition 36 Si f et g sont continues en a (resp. sur I), alors f + g, αf (où $\alpha \in \mathbb{C}$) et $f \times g$ aussi. Si, de plus, $g(a) \neq 0$ (resp. g ne s'annule pas sur I), alors $\frac{f}{g}$ est continue en a (resp. sur I).