Correction du DNS 12

- 1) Montrons que f est bijective.
- Première méthode : on montre que f est injective puis qu'elle est surjective.

Injectivité : Soient $m, n \in \mathbb{N}$ tels que f(m) = f(n). Alors 2m = 2n, donc m = n. L'application f est bien injective.

Surjectivité : Soit $p \in P$. Alors $p/2 \in \mathbb{N}$ et f(p/2) = p. L'application f est surjective.

– Deuxième méthode : soient $p \in P$ et $n \in \mathbb{N}$. Alors :

$$f(n) = p \Leftrightarrow 2n = p \Leftrightarrow n = p/2,$$

et $p/2 \in \mathbb{N}$ puisque p est pair. On a ainsi montré que tout élément de P a un unique antécédent par f, donc f est bijective.

- Troisième méthode : soit l'application $g: P \to \mathbb{N}$ définie par g(p) = p/2.

Pour tout $n \in \mathbb{N}$ on a $(g \circ f)(n) = g(f(n)) = g(2n) = n$, donc $g \circ f = \mathrm{Id}_{\mathbb{N}}$. Pour tout $p \in P$ on a $(f \circ g)(p) = f(p/2) = p$, donc $f \circ g = \mathrm{Id}_{P}$.

On a $g \circ f = \mathrm{Id}_{\mathbb{N}}$ et $f \circ g = \mathrm{Id}_{P}$, donc, d'après un théorème du cours, f est bijective (et sa réciproque est g).

- Conclusion : f est une bijection de $\mathbb N$ dans P donc P est dénombrable.
- 2) Montrons que l'application $f: \mathbb{N} \to \mathbb{N}^*$ définie par f(n) = n+1 est bijective.
- Première méthode : on montre que f est injective puis qu'elle est surjective.

Injectivité : Soient $m, n \in \mathbb{N}$ tels que f(m) = f(n). Alors m + 1 = n + 1, donc m = n. L'application f est injective.

Surjectivité : Soit $p \in \mathbb{N}^*$. Alors $p-1 \in \mathbb{N}$ et f(p-1)=p. L'application f est surjective.

- Deuxième méthode : soient $p \in \mathbb{N}^*$ et $n \in \mathbb{N}$. Alors :

$$f(n) = p \Leftrightarrow n+1 = p \Leftrightarrow n = p-1,$$

et on a bien $p-1 \in \mathbb{N}$. On a ainsi montré que tout élément de \mathbb{N}^* a un unique antécédent par f, donc f est bijective.

- Troisième méthode : soit l'application $g: \mathbb{N}^* \to \mathbb{N}$ définie par g(p) = p - 1.

Pour tout $n \in \mathbb{N}$ on a $(g \circ f)(n) = g(f(n)) = g(n+1) = n$, donc $g \circ f = \mathrm{Id}_{\mathbb{N}}$. Pour tout $p \in \mathbb{N}^*$ on a $(f \circ g)(p) = f(p-1) = p$, donc $f \circ g = \mathrm{Id}_{\mathbb{N}^*}$.

On a $g \circ f = \mathrm{Id}_{\mathbb{N}}$ et $f \circ g = \mathrm{Id}_{\mathbb{N}^*}$, donc, d'après un théorème du cours, f est bijective (et sa réciproque est g).

- Conclusion : f est une bijection de \mathbb{N} dans \mathbb{N}^* , donc \mathbb{N}^* est dénombrable.
- 3) Déterminons $g \circ f$. Soit $n \in \mathbb{N}$.

Si n est pair, alors

$$(g \circ f)(n) = g(f(n)) = g(n/2) = 2n/2 = n \text{ (car } n/2 \ge 0).$$

Si n est impair, alors

$$(g \circ f)(n) = g(f(n)) = g(-(n+1)/2) = -2(-(n+1)/2) + 1 = n (car - (n+1)/2 < 0).$$

Par conséquent $g \circ f = \mathrm{Id}_{\mathbb{N}}$.

Déterminons $f \circ g$. Soit $n \in \mathbb{Z}$.

Si $n \ge 0$, alors

$$(f \circ g)(n) = f(g(n)) = f(2n) = 2n/2 = n \text{ (car } 2n \text{ est impair)}.$$

Si n < 0, alors

$$(f \circ g)(n) = f(g(n)) = f(-2n-1) = -(-2n-1+1)/2 = n \text{ (car } -2n-1 \text{ est impair)}.$$

Par conséquent $f \circ q = \mathrm{Id}_{\mathbb{Z}}$.

On a $f \circ g = \operatorname{Id}_{\mathbb{Z}}$ et $g \circ f = \operatorname{Id}_{\mathbb{N}}$, donc, d'après un théorème du cours, f est bijective (et sa réciproque est g). On en déduit que \mathbb{Z} est dénombrable.

4) a) On trouve
$$\varphi(0,0) = 1$$
, $\varphi(0,1) = 3$, $\varphi(0,2) = 5$, $\varphi(1,0) = 2$, $\varphi(1,1) = 6$, $\varphi(1,2) = 10$, $\varphi(2,0) = 4$, $\varphi(2,1) = 12$ et $\varphi(2,2) = 20$.

En écrivant que $120 = 2^3 3^1 5^1 = 2^3 \times 15 = 2^3 (2 \times 7 + 1)$, on voit que $\varphi(3,7) = 120$, donc (3,7) est un antécédent de 120 par φ .

b) Soient (p,q) et $(r,s) \in \mathbb{N}^2$ tels que $\varphi(p,q) = \varphi(r,s)$. On peut supposer par exemple que $p \ge r$. Alors $2^p(2q+1) = 2^r(2s+1)$, donc $2^{p-r}(2q+1) = 2s+1$. Si p > r, $2^{p-r}(2q+1)$ est un entier naturel pair alors que 2s+1 est impair : impossible. Par conséquent p = r. Alors 2q+1 = 2s+1, donc q = s. On a donc (p,q) = (r,s).

Conclusion : φ est injective.

c) Soit $n \in \mathbb{N}^*$. On peut le décomposer en produit de facteurs premiers sous la forme $n = 2^p p_1^{a_1} p_2^{a_2} \dots p_r^{a_r}$ où p_1, \dots, p_r sont des nombres premiers impairs, $p \in \mathbb{N}$ et $a_1, \dots, a_r \in \mathbb{N}^*$. Ainsi $p_1^{a_1} p_2^{a_2} \dots p_r^{a_r}$ est impair : on peut l'écrire sous la forme 2q + 1 où $q \in \mathbb{N}$. On a ainsi $n = 2^p (2q + 1) = \varphi(p, q)$.

Conclusion : φ est surjective.

- d) L'application φ est une bijection de \mathbb{N}^2 dans \mathbb{N}^* , donc sa réciproque φ^{-1} est une bijection de \mathbb{N}^* dans \mathbb{N}^2 . De plus on a vu en 2) qu'il existe une bijection f de \mathbb{N} dans \mathbb{N}^* . L'application $\varphi^{-1} \circ f$ est donc une bijection de \mathbb{N} dans \mathbb{N}^2 . On en déduit que \mathbb{N}^2 est dénombrable.
- 5) a) Soit l'application $\varphi: F \times F \to E \times E$ définie par $\varphi(a,b) = (f^{-1}(a),f^{-1}(b))$ pour tout $(a,b) \in F \times F$.

Pour tout $(x,y) \in E \times E$, on a $(\varphi \circ \psi)(x,y) = \varphi(f(x),f(y)) = (f^{-1}(f(x)),f^{-1}(f(y))) = (x,y)$, donc $\varphi \circ \psi = \mathrm{Id}_{E \times E}$.

Pour tout $(a,b) \in F \times F$, on a $(\psi \circ \varphi)(a,b) = \psi(f^{-1}(a),f^{-1}(b)) = (f(f^{-1}(a)),f(f^{-1}(b))) = (a,b)$, donc $\psi \circ \varphi = \mathrm{Id}_{F \times F}$.

Ainsi on a $\varphi \circ \psi = \mathrm{Id}_{E \times E}$ et $\psi \circ \varphi = \mathrm{Id}_{F \times F}$, donc ψ est bijective (et sa réciproque est φ).

On peut aussi montrer que ψ est injective et surjective, ou que tout élément de $F \times F$ a un unique antécédent par ψ .

- b) Il existe une bijection f de \mathbb{N} dans \mathbb{Z} , donc d'après la question précédente il existe une bijection ψ de \mathbb{N}^2 dans \mathbb{Z}^2 . Par ailleurs \mathbb{N}^2 est dénombrable donc il existe une bijection h de \mathbb{N} dans \mathbb{N}^2 . Ainsi l'application $\psi \circ h$ est une bijection de \mathbb{N} dans \mathbb{Z}^2 . On en déduit que \mathbb{Z}^2 est dénombrable.
- 6) a) Supposons f surjective. Posons $A = \{x \in E \mid x \notin f(x)\}$. C'est un élément de $\mathcal{P}(E)$, donc il existe $x_0 \in E$ tel que $f(x_0) = A$.
- Si $x_0 \in A$, alors $x_0 \notin f(x_0)$, donc $x_0 \notin A$: impossible. Mais si $x_0 \notin A$, alors $x_0 \in f(x_0)$, donc $x_0 \in A$: c'est impossible également.

On a une contradiction. L'application f ne peut donc pas être surjective.

- b) Si $\mathcal{P}(\mathbb{N})$ était dénombrable, il existerait une bijection de \mathbb{N} dans $\mathcal{P}(\mathbb{N})$: d'après la question précédente, c'est impossible. Par conséquent $\mathcal{P}(\mathbb{N})$ n'est pas dénombrable.
- 7) a) Soient $A, B \in \mathcal{P}(E)$ tels que $\varphi(A) = \varphi(B)$. Alors $\mathbb{1}_A = \mathbb{1}_B$, donc A = B d'après un théorème du cours. Conclusion : φ est injective.
- b) Soit f une application de E dans $\{0,1\}$. Posons $A=f^{-1}(\{1\})$ et montrons que $f=\mathbbm{1}_A$, c'est-à-dire que $f(x)=\mathbbm{1}_A(x)$ pour tout $x\in E$.

Soit $x \in E$. Si $x \in A$, alors $f(x) \in \{1\}$, donc $f(x) = 1 = \mathbb{1}_A(x)$. Si $x \notin A$, alors $f(x) \notin \{1\}$, donc $f(x) = 0 = \mathbb{1}_A(x)$. Dans les deux cas on a $f(x) = \mathbb{1}_A(x)$.

On a ainsi montré que, pour tout $f \in \{0,1\}^E$, on a $f = \varphi(f^{-1}(\{1\}))$, ce qui prouve que φ est surjective.

c) Si $\{0,1\}^{\mathbb{N}}$ était dénombrable, il existerait une bijection ψ de \mathbb{N} dans $\{0,1\}^{\mathbb{N}}$. Mais alors l'application $\varphi^{-1} \circ \psi$, où $\varphi : \mathcal{P}(\mathbb{N}) \to \{0,1\}^{\mathbb{N}}$ est définie comme ci-dessus en prenant $E = \mathbb{N}$, serait une bijection de \mathbb{N} dans $\mathcal{P}(\mathbb{N})$: impossible d'après 6)b). L'ensemble $\{0,1\}^{\mathbb{N}}$ n'est donc pas dénombrable.