Interrogation de cours : Mouvements d'un solide

	Su	Non su
1. Donner l'expression du moment cinétique et de l'énergie cinétique d'un solide en rotation autour d'un axe fixe (Δ) . Énoncer le théorème du moment cinétique pour un solide en rotation autour d'un axe fixe.		
$\boxed{L_{\Delta} = J_{\Delta}\omega ; \boxed{E_c = \frac{1}{2}J_{\Delta}\omega^2} ; \boxed{\frac{\mathrm{d}L_{\Delta}}{\mathrm{d}t} = J_{\Delta}\frac{\mathrm{d}\omega}{\mathrm{d}t} = \sum \left(\mathscr{M}_{\Delta}(\vec{F}) + \Gamma\right)}$		
2. Une tige horizontale est attachée à un fil de torsion vertical. Faire un schéma et indiquer comment on modélise l'action mécanique du fil de torsion sur la tige.		
Le fil de torsion exerce sur la tige :		
• une force résultante de tension \vec{T} ;		
• un couple de rappel $\Gamma = -C\theta$ avec θ l'angle de torsion du fil.		
3. Donner, de deux manières différentes, l'expression de la puissance d'une force qui s'exerce sur un solide en rotation autour d'un axe fixe.		
• $\mathscr{P} = \vec{F} \cdot \vec{v}$ avec \vec{v} la vitesse du point d'application de la force ;		
$ullet$ $=\omega\mathscr{M}_{\Delta}(ec{F})$.		
4. Exprimer l'énergie potentielle de pesanteur d'un solide. Indiquer comment calculer le travail du poids qui s'exerce sur un solide.		
• $E_p = \pm mgz_G$ avec z_G l'altitude du centre d'inertie du solide (signe + si l'axe (Oz) est ascendant, signe - s'il est descendant);		
• $W(\vec{P}) = \pm mgh_G$ avec h_G le dénivelé du centre d'inertie (signe + si G descend et signe - s'il monte).		