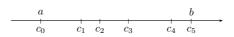
INTÉGRATION

I Fonctions en escalier

1 Subdivisions d'un segment

Définition 1 Une subdivision d'un segment [a,b] de \mathbb{R} (a < b) est une famille finie $\sigma = (c_0, c_1, \ldots, c_n)$ d'éléments de [a,b] telle que $a = c_0 < c_1 < \ldots < c_n = b$.



On appelle alors **pas** de σ le réel $\max_{0 \le k \le n-1} |c_{k+1} - c_k|$, c'est-à-dire l'écart maximal entre deux éléments successifs de la subdivision.

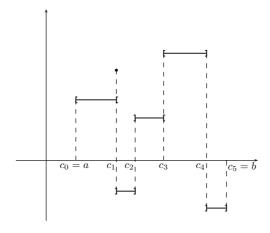
Par exemple, en posant $c_k = a + k \frac{b-a}{n}$ pour $0 \le k \le n$, on définit une subdivision (dite régulière) de [a,b] dont le pas est $\frac{b-a}{n}$.

2 Fonctions en escalier sur un segment

Définition 2 $f:[a,b] \to \mathbb{R}$ est une fonction en escalier sur [a,b] s'il existe une subdivision $\sigma = (c_0, \ldots, c_n)$ de [a,b] telle que f soit constante sur chaque intervalle $[c_k, c_{k+1}]$.

On dit alors que la subdivision σ est **subordonnée** à f.

On notera $\mathcal{E}([a,b])$ l'ensemble des fonctions en escalier sur le segment [a,b].



Proposition 1 Si f et g sont deux fonctions en escalier sur [a,b], alors f+g, αf (où $\alpha \in \mathbb{R}$) et $f \times g$ aussi.

En particulier, $\mathcal{E}([a,b])$ est un sous-espace vectoriel de $(\mathcal{F}([a,b]),+,.)$.

Démonstration :

Pour αf , c'est immédiat. Pour f+g et $f\times g$, il suffit de considérer une subdivision subordonnée à la fois à f et à g (obtenue par exemple en réunissant les points d'une subdivision subordonnée à f et d'une subdivision subordonnée à g). \square

Proposition 2 Une fonction en escalier sur un segment est bornée sur ce segment.

Démonstration : Elle prend un nombre fini de valeurs. \square

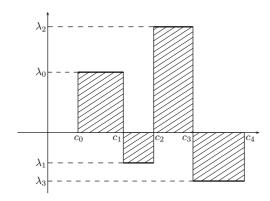
3 Intégrale d'une fonction en escalier sur un segment

Définition 3 Soit f une fonction en escalier sur le segment [a,b]. Soit $\sigma = (c_0, \ldots, c_n)$ une subdivision de [a,b] subordonnée à f. L'intégrale de f sur [a,b] est le réel noté $\int_{[a,b]} f$ défini par :

$$\int_{[a,b]} f = \sum_{k=0}^{n-1} (c_{k+1} - c_k) \lambda_k,$$

où λ_k désigne la valeur prise par f sur l'intervalle $]c_k, c_{k+1}[.$

Interprétation : $\int_{[a,b]} f$ est la somme des aires algébriques des rectangles définis par l'axe des abscisses et la courbe (aires comptées négativement lorsque $\lambda_k < 0$).



Proposition 3 Le nombre $\int_{[a,b]} f$ est indépendant de la subdivision σ choisie.

C'est-à-dire que si l'on prend une autre subdivision subordonnée à f, la valeur de $\int_{[a,b]} f$ est la même.

Démonstration :

Remarquons d'abord que si on rajoute un point à σ , l'un des rectangles est séparé en deux, mais la somme des aires des deux nouveaux rectangles est égale à l'aire du rectangle initial, donc l'intégrale ne change pas.

Soient σ_1 et σ_2 deux subdivisions de [a,b] subordonnées à f. Notons $\sigma_1 \cup \sigma_2$ la subdivision obtenue en réunissant les points de σ_1 et de σ_2 . On passe ainsi de σ_1 à $\sigma_1 \cup \sigma_2$ en ajoutant un nombre fini de points, donc, d'après la remarque précédente, l'intégrale associée à $\sigma_1 \cup \sigma_2$ est égale à celle associée à σ_2 . Les trois intégrales sont donc égales. \square

4 Propriétés

Proposition 4 (Linéarité de l'intégrale) Soient $f, g \in \mathcal{E}([a, b])$ et $\alpha, \beta \in \mathbb{R}$. Alors :

$$\int_a^b (\alpha f + \beta g)(x) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx.$$

On dit que l'application $\varphi:\mathcal{E}([a,b])\to\mathbb{R}$ définie par $\varphi(f)=\int_a^b f(x)\,dx$ est linéaire.

Démonstration :

Soit $\sigma=(c_0,\ldots,c_n)$ une subdivision subordonnée à la fois à f et à g. Notons λ_k et μ_k les valeurs respectives de f et de g sur $]c_k,c_{k+1}[-1]$. Alors $\int_{[a,b]}(\alpha f+\beta g)=\sum_{k=0}^{n-1}(c_{k+1}-c_k)(\alpha\lambda_k+\beta\mu_k)=\alpha\sum_{k=0}^{n-1}(c_{k+1}-c_k)\lambda_k+\beta\sum_{k=0}^{n-1}(c_{k+1}-c_k)\mu_k=\alpha\int_a^bf(x)\,dx+\beta\int_a^bg(x)\,dx$. \square

Proposition 5 (Positivité de l'intégrale) Soit $f \in \mathcal{E}([a,b])$. Si f est positive sur [a,b], alors $\int_a^b f(x) dx \ge 0$.

Démonstration : Immédiat. \square

Corollaire 6 (Croissance de l'intégrale) Soient $f, g \in \mathcal{E}([a,b])$. Si $f \leqslant g$ sur [a,b], alors $\int_a^b f(x) dx \leqslant \int_a^b g(x) dx$.

 $\textbf{D\'{e}monstration}: \text{Appliquer la proposition pr\'ec\'edente \`a } g-f \text{ et utiliser la lin\'earit\'e de l'int\'egrale.} \ \square$

II Intégrale d'une fonction continue sur un segment

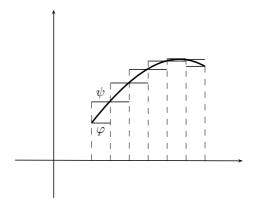
1 Approximation d'une fonction continue sur un segment par des fonctions en escalier

On admet le résultat suivant :

Proposition 7 Soit f une fonction continue sur [a,b]. Alors, pour tout $\varepsilon > 0$, il existe deux fonctions en escalier sur $[a,b] \varphi$ et ψ telles que :

 $\begin{cases}
\varphi \leqslant f \leqslant \psi \\
\psi - \varphi \leqslant \varepsilon
\end{cases}.$

Autrement dit, on peut encadrer f par des fonctions en escalier d'aussi près que l'on veut.



2 Intégrale d'une fonction continue sur un segment

Proposition 8 Soit f une fonction continue sur le segment [a,b]. Soit \mathcal{A} l'ensemble des fonctions φ en escalier sur [a,b] telles que $\varphi \leqslant f$ et soit \mathcal{B} l'ensemble des fonctions ψ en escalier sur [a,b] telles que $\psi \geqslant f$.

Alors l'ensemble $A = \{ \int_{[a,b]} \varphi \, | \, \varphi \in \mathcal{A} \}$ est majoré, l'ensemble $B = \{ \int_{[a,b]} \psi \, | \, \psi \in \mathcal{B} \}$ est minoré, et $\sup A = \inf B$.

Cette borne commune est appelée intégrale de f sur [a,b] et est notée $\int_{[a,b]} f$.

On a donc :

$$\int_{[a,b]} f = \sup \left\{ \int_{[a,b]} \varphi \, \big| \, \varphi \in \mathcal{E}([a,b]) \text{ et } \varphi \leqslant f \right\} = \inf \left\{ \int_{[a,b]} \psi \, \big| \, \psi \in \mathcal{E}([a,b]) \text{ et } \psi \geqslant f \right\}.$$

Démonstration :

La fonction f est continue sur [a,b], donc elle est bornée. Soient m un minorant et M un majorant de f sur [a,b]. Alors, pour toute fonction $\varphi \in \mathcal{A}$, on a $\int_{[a,b]} \varphi \leqslant M(b-a)$, donc l'ensemble A est majoré (par conséquent il admet une borne supérieure). De même, pour toute fonction $\psi \in \mathcal{B}$, on a $\int_{[a,b]} \psi \geqslant m(b-a)$, donc l'ensemble B est minoré (par conséquent il admet une borne inférieure).

Soit $\varphi \in \mathcal{A}$ et $\psi \in \mathcal{B}$. Alors $\varphi \leqslant \psi$ donc $\int_{[a,b]} \varphi \leqslant \int_{[a,b]} \psi$. Ainsi tout élément de B est un majorant de A, donc est supérieur ou égal à $\sup A$. Par conséquent, $\sup A$ est un minorant de B, et par suite $\sup A \leqslant \inf B$.

Soit $\varepsilon > 0$. D'après la proposition 7, il existe $\varphi \in \mathcal{A}$ et $\psi \in \mathcal{B}$ tels que $\psi - \varphi \leqslant \frac{\varepsilon}{b-a}$. Alors $\int_{[a,b]} (\psi - \varphi) \leqslant \varepsilon$, donc $\int_{[a,b]} \psi \leqslant \int_{[a,b]} \varphi + \varepsilon$. Or inf $B \leqslant \int_{[a,b]} \psi$ et $\int_{[a,b]} \varphi \leqslant \sup A$, donc inf $B \leqslant \sup A + \varepsilon$.

On a ainsi montré que, pour tout $\varepsilon>0$, sup $A\leqslant\inf B\leqslant\sup A+\varepsilon$: on en déduit que inf $B=\sup A.$ \square

Définition 4 Soit f une fonction continue sur un segment I de \mathbb{R} . Soient $a,b \in I$. On pose:

$$\int_{a}^{b} f = \int_{a}^{b} f(x) dx = \begin{cases} \int_{[a,b]} f & \text{si } a < b \\ 0 & \text{si } a = b \\ -\int_{[b,a]} f & \text{si } a > b \end{cases}.$$

3

On a donc $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$.

3 Linéarité

Proposition 9 Soient f et g deux fonctions continues sur le segment [a,b] et soient $\alpha,\beta\in\mathbb{R}$. Alors :

$$\int_a^b (\alpha f + \beta g)(x) \, dx = \alpha \int_a^b f(x) \, dx + \beta \int_a^b g(x) \, dx.$$

Démonstration :

Commençons par montrer que $\int_{[a,b]} (f+g) = \int_{[a,b]} f + \int_{[a,b]} g$.

Soit $\varepsilon > 0$. Par définition de l'intégrale, il existe des fonctions en escalier sur [a,b] $\varphi_1, \psi_1, \varphi_2, \psi_2$ telles que $\varphi_1 \leqslant f \leqslant \psi_1$ avec $\int_{[a,b]} \psi_1 - \int_{[a,b]} \varphi_1 \leqslant \varepsilon/2$ et $\varphi_2 \leqslant g \leqslant \psi_2$ avec $\int_{[a,b]} \psi_2 - \int_{[a,b]} \varphi_2 \leqslant \varepsilon/2$.

On a alors $\varphi_1 + \varphi_2 \leqslant f + g \leqslant \psi_1 + \psi_2$, donc $\int_{[a,b]} (\varphi_1 + \varphi_2) \leqslant \int_{[a,b]} (f+g) \leqslant \int_{[a,b]} (\psi_1 + \psi_2)$, et on a aussi $\int_{[a,b]} \varphi_1 \leqslant \int_{[a,b]} \psi_1$ et $\int_{[a,b]} \varphi_2 \leqslant \int_{[a,b]} \psi_2$ donc $\int_{[a,b]} (\varphi_1 + \varphi_2) \leqslant \int_{[a,b]} f + \int_{[a,b]} g \leqslant \int_{[a,b]} (\psi_1 + \psi_2)$ (linéarité de l'intégrale pour les fonctions en escalier). Or $0 \leqslant \int_{[a,b]} (\psi_1 + \psi_2) - \int_{[a,b]} (\varphi_1 + \varphi_2) \leqslant \varepsilon$, donc $-\varepsilon \leqslant \int_{[a,b]} (f+g) - \left(\int_{[a,b]} f + \int_{[a,b]} g\right) \leqslant \varepsilon$. Cet encadrement étant valable pour tout $\varepsilon > 0$, on en déduit que $\int_{[a,b]} (f+g) = \int_{[a,b]} f + \int_{[a,b]} g$.

Montrons maintenant que $\int_{[a,b]} \alpha f = \alpha \int_{[a,b]} f$. Si $\alpha=0$ c'est immédiat. Supposons $\alpha>0$.

Soit $\varepsilon > 0$. Il existe des fonctions en escalier sur [a,b] φ et ψ telles que $\varphi \leqslant f \leqslant \psi$ avec $\int_{[a,b]} \psi - \int_{[a,b]} \varphi \leqslant \varepsilon/\alpha$.

On a alors $\alpha\varphi\leqslant\alpha f\leqslant\alpha\psi$, donc $\int_{[a,b]}\alpha\varphi\leqslant\int_{[a,b]}\alpha f\leqslant\int_{[a,b]}\alpha\psi$, et on a aussi $\alpha\int_{[a,b]}\varphi\leqslant\alpha\int_{[a,b]}f\leqslant\alpha\int_{[a,b]}\psi$ donc $\int_{[a,b]}\alpha\varphi\leqslant\alpha\int_{[a,b]}f\leqslant\int_{[a,b]}\alpha\psi$ par linéarité de l'intégrale pour les fonctions en escalier.

Or $0 \leqslant \int_{[a,b]} \alpha \psi - \int_{[a,b]} \alpha \varphi \leqslant \varepsilon$, donc $-\varepsilon \leqslant \int_{[a,b]} \alpha f - \alpha \int_{[a,b]} f \leqslant \varepsilon$. Cet encadrement étant valable pour tout $\varepsilon > 0$, on en déduit que $\int_{[a,b]} \alpha f = \alpha \int_{[a,b]} f$.

Si $\alpha < 0$, on adapte le raisonnement précédent en considérant $\varepsilon/(-\alpha)$ et en modifiant le sens des inégalités si nécessaire. \square

4 Positivité, croissance

Proposition 10 Soit $f \in \mathcal{C}([a,b])$. Si f est positive sur [a,b], alors $\int_a^b f(x) dx \ge 0$.

Démonstration:

La fonction nulle 0 est une fonction en escalier sur [a,b] et $0 \le f$, donc par définition $\int_0^b f(x) \, dx \ge \int_0^b 0 \, dx = 0$.

Corollaire 11 Soient $f, g \in \mathcal{C}([a,b])$ telles que $f \leqslant g$ sur [a,b]. Alors $\int_a^b f(x) dx \leqslant \int_a^b g(x) dx$.

Démonstration : Appliquer la proposition précédente à g-f. \square

Remarque: Quand on applique ces propositions, il faut faire attention à ce que les bornes soient dans le bon sens.

Proposition 12 Si $f:[a,b] \to \mathbb{R}$ est continue et positive sur [a,b] et que $\int_a^b f(x) dx = 0$, alors f=0.

${\bf D\'{e}monstration}:$

On va raisonner par l'absurde : supposons que f est non nulle. Il existe donc un $x_0 \in [a,b]$ tel que $f(x_0) > 0$.

Or f est continue en x_0 , donc il existe un voisinage $V = [x_0 - \delta, x_0 + \delta]$ de x_0 dans [a, b] tel que $f(x) > \frac{f(x_0)}{2}$ pour tout $x \in V$.

Soit la fonction $g:[a,b]\to\mathbb{R}$ définie par g(x)=0 si $x\not\in V$ et $g(x)=\frac{f(x_0)}{2}$ si $x\in V$. Alors on a $f\geqslant g$ sur [a,b], donc $\int_a^b f(x)\,dx\geqslant\int_a^b g(x)\,dx=\delta f(x_0)>0$, ce qui contredit l'hypothèse $\int_a^b f(x)\,dx=0$. Conclusion : f est la fonction nulle. \square

Remarque : Le théorème n'est pas valable pour les fonctions en escalier. Par exemple, la fonction f définie sur [0,1] par f(x) = 0 si $x \in [0,1]$ et f(1) = 1 est positive et son intégrale sur [0,1] est nulle, mais f n'est pas nulle.

5 Relation de Chasles

Proposition 13 Soit f une fonction continue sur un segment I de \mathbb{R} . Soient $a, b, c \in I$. Alors:

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx.$$

Démonstration :

On démontre d'abord la proposition lorsque a < c < b.

Soit $\varepsilon > 0$. Il existe deux fonctions en escalier sur [a,b] φ et ψ telles que $\varphi \leqslant f \leqslant \psi$ avec $\int_{[a,b]} \psi - \int_{[a,b]} \varphi \leqslant \varepsilon$.

Notons f_1 et f_2 (respectivement φ_1 et φ_2 , ψ_1 et ψ_2) les restrictions de f (repectivement de φ , de ψ) aux segments [a,c] et [c,b]. Alors $\varphi_1, \varphi_2, \psi_1, \psi_2$ sont également en escalier, et en revenant à la définition on voit que $\int_{[a,b]} \varphi = \int_{[a,c]} \varphi_1 + \int_{[c,b]} \varphi_2$ et que $\int_{[a,b]} \psi = \int_{[a,c]} \psi_1 + \int_{[c,b]} \psi_2$.

De plus on a $\varphi_1 \leqslant f_1 \leqslant \psi_1$ et $\varphi_2 \leqslant f_2 \leqslant \psi_2$, donc $\int_{[a,c]} \varphi_1 \leqslant \int_{[a,c]} f_1 \leqslant \int_{[a,c]} \psi_1$ et $\int_{[c,b]} \varphi_2 \leqslant \int_{[c,b]} f_2 \leqslant \int_{[c,b]} \psi_2$. En additionnant, on obtient l'encadrement $\int_{[a,b]} \varphi \leqslant \int_{[a,c]} f_1 + \int_{[c,b]} f_2 \leqslant \int_{[a,b]} \psi$.

On en déduit que $-\varepsilon \leqslant \int_{[a,b]} f - \left(\int_{[a,c]} f_1 + \int_{[c,b]} f_2 \right) \leqslant \varepsilon$. Cet encadrement étant valable pour tout $\varepsilon > 0$, il s'ensuit que $\int_{[a,b]} f = \int_{[a,c]} f_1 + \int_{[c,b]} f_2$.

On étudie ensuite les cas où a,b,c sont ordonnés différemment en se ramenant au cas précédent. \square

6 Intégrale et valeur absolue

Proposition 14 Soit f une fonction continue sur [a,b]. Alors $\left| \int_a^b f(x) \, dx \right| \leqslant \int_a^b |f(x)| \, dx$.

Démonstration :

 $|f| \text{ est continue sur } [a,b] \text{ par continuit\'e de la fonction valeur absolue sur } \mathbb{R}. \text{ De plus, pour tout } x \in [a,b], \text{ on a } -|f(x)| \leqslant f(x) \leqslant |f(x)|, \\ \operatorname{donc} - \int_a^b |f(x)| \, dx \leqslant \int_a^b |f(x)| \, dx \leqslant \int_a^b |f(x)| \, dx = \operatorname{donc} \left| \int_a^b |f(x)| \, dx \right| \leqslant \int_a^b |f(x)| \, dx. \ \Box$

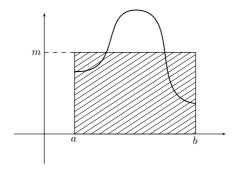
Remarque: Il faut faire attention à ce que les bornes soient dans le bon ordre.

7 Valeur moyenne d'une fonction

Définition 5 Soit f une fonction continue sur [a,b]. On appelle valeur moyenne de f sur [a,b] le réel :

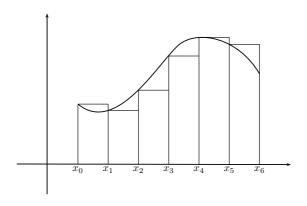
$$m = \frac{1}{b-a} \int_a^b f(x) \, dx.$$

Interprétation : m est la valeur de la fonction constante ayant même intégrale sur [a,b] que f.



8 Sommes de Riemann

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue. L'idée est ici d'approximer $\int_a^b f(x)dx$ par une somme d'aires de rectangles.



Soit n un entier naturel non nul. Considérons la subdivision régulière (x_0, \ldots, x_n) de [a, b] où $x_k = a + k \frac{b-a}{n}$ pour tout $k \in \{0, \ldots, n\}$. Les intervalles de cette subdivision sont de longueur $\frac{b-a}{n}$.

L'aire du rectangle de base $[x_k, x_{k+1}]$ et de hauteur $f(x_k)$ est $(x_{k+1} - x_k)f(x_k) = \frac{b-a}{n}f(x_k)$ et la somme des aires de ces rectangles est $S_n = \frac{b-a}{n}\sum_{k=0}^{n-1}f(x_k)$.

Définition 6 Soit $f:[a,b]\to\mathbb{R}$ une fonction continue. Soit $n\in\mathbb{N}^*$. La somme de Riemann associée à f est

$$S_n = \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right).$$

Proposition 15 La suite (S_n) converge vers $\int_a^b f(x) dx$.

Démonstration : (uniquement dans le cas où la fonction f est lipschitzienne sur [a,b], le cas général est hors-programme) Étudions d'abord le cas où il n'y a qu'un seul rectangle : $S_1 = (b-a)f(a)$.

$$\text{En \'ecrivant que } (b-a)f(a) = \int_a^b f(a) \, dx, \, \text{on a} \left| \int_a^b f(x) \, dx - S_1 \right| = \left| \int_a^b (f(x) - f(a)) \, dx \right| \leqslant \int_a^b \left| f(x) - f(a) \right| \, dx.$$

La fonction f est lipschitzienne sur [a,b] donc il existe un réel positif M tel que $|f(x)-f(y)|\leqslant M|x-y|$ pour tous $x,y\in[a,b]$. Par conséquent $\int_a^b |f(x)-f(a)|dx\leqslant \int_a^b M|x-a|\,dx=\frac{M(b-a)^2}{2}$.

On revient maintenant au cas n quelconque. En utilisant la relation de Chasles, on peut écrire que $\int_a^b f(x) dx = \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} f(x) dx$.

On a donc
$$\left| \int_a^b f(x) dx - S_n \right| = \left| \sum_{k=0}^{n-1} \left(\int_{x_k}^{x_{k+1}} f(x) dx - (x_{k+1} - x_k) f(x_k) \right) \right| \le \sum_{k=0}^{n-1} \left| \int_{x_k}^{x_{k+1}} f(x) dx - (x_{k+1} - x_k) f(x_k) \right|$$

Or, d'après l'étude précédente, on a
$$\left| \int_{x_k}^{x_{k+1}} f(x) dx - (x_{k+1} - x_k) f(x_k) \right| \leqslant \frac{M(x_{k+1} - x_k)^2}{2} = \frac{M(b-a)^2}{2n^2}.$$

Par conséquent $\left| \int_a^b f(x) \, dx - S_n \right| \le \sum_{k=0}^{n-1} \frac{M(b-a)^2}{2n^2} = \frac{M(b-a)^2}{2n}$, et le théorème des gendarmes permet de conclure. \square

Remarque: Si [a,b] = [0,1], la formule devient $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) = \int_0^1 f(x) dx$.

Exercise 1 Calcular $\lim_{n\to+\infty}\frac{1}{n^2}\sum_{k=0}^{n-1}\sqrt{n^2-k^2}$.

9 Extension aux fonctions à valeurs complexes

Définition 7 Soit $f \in \mathcal{C}([a,b],\mathbb{C})$. On définit l'intégrale de f sur [a,b] par :

$$\int_a^b f(x) dx = \int_a^b (\operatorname{Re} f)(x) dx + i \int_a^b (\operatorname{Im} f)(x) dx.$$

Les propriétés suivantes restent vraies pour les fonctions à valeurs complexes : linéarité de l'intégrale, relation de Chasles, inégalité $\left|\int_a^b f(x)\,dx\right| \leqslant \int_a^b |f(x)|\,dx$ (où $a\leqslant b$).

Démonstration : On démontre la dernière inégalité, le reste est facile. Si $\int_a^b f(x) dx = 0$, c'est immédiat. Supposons que cette intégrale est non nulle. Posons $\int_a^b f(x) dx = \rho e^{i\theta}$ avec $\rho > 0$. Alors $\left| \int_a^b f(x) dx \right| = \rho = e^{-i\theta} \int_a^b f(x) dx = \int_a^b e^{-i\theta} f(x) dx$.

Soient
$$u = \operatorname{Re}(e^{-i\theta}f)$$
 et $v = \operatorname{Im}(e^{-i\theta}f)$. Alors $\int_a^b e^{-i\theta}f(x) \, dx = \int_a^b u(x) \, dx + i \int_a^b v(x) \, dx = \int_a^b u(x) \, dx$ (c'est un réel) et $\int_a^b |f(x)| \, dx = \int_a^b |e^{-i\theta}f(x)| \, dx = \int_a^b \sqrt{u(x)^2 + v(x)^2} \, dx$.

Or pour tout
$$x \in [a,b]$$
 on a $u(x) \leq |u(x)| \leq \sqrt{u(x)^2 + v(x)^2}$ donc $\left| \int_a^b f(x) \, dx \right| \leq \int_a^b |f(x)| \, dx$. \Box

III Primitives d'une fonction continue

Dans ce paragraphe, I est un intervalle de \mathbb{R} . Les fonctions considérées sont à valeurs réelles mais les résultats restent valables pour des fonctions à valeurs complexes.

1 Définition

Définition 8 Soit f une fonction continue sur I. Une **primitive de** f **sur** I est une fonction F dérivable sur I telle que F' = f.

Proposition 16 Deux primitives d'une même fonction diffèrent d'une constante.

Cela signifie que si F_1 et F_2 sont deux primitives de f, alors il existe une constante $c \in \mathbb{R}$ telle que $F_1 = F_2 + c$. On ne dira donc jamais la primitive de f mais une primitive de f.

Démonstration :

Soient F_1 et F_2 deux primitives de f sur I. Alors $F_1' = F_2' = f$, donc $(F_1 - F_2)' = 0$, et donc $F_1 - F_2$ est constante sur I. \square

Remarque: Les primitives se prennent sur un intervalle et pas sur une réunion d'intervalles.

2 Théorème fondamental de l'analyse

Le théorème suivant fait le lien entre les notions d'intégrale et de primitive, donc entre l'intégration et la dérivation.

Théorème 17 Soit $f: I \to \mathbb{R}$ une fonction continue sur I. Soit $a \in I$. Alors la fonction $F: I \to \mathbb{R}$ définie par :

$$F(x) = \int_{a}^{x} f(t) dt$$

est une primitive de f sur I.

Démonstration : Soit $x_0 \in I$. Montrons que F est dérivable en x_0 et que $F'(x_0) = f(x_0)$. Pour tout $h \in \mathbb{R}$ tel que $x_0 + h \in I$, on a :

$$\frac{F(x_0 + h) - F(x_0)}{h} - f(x_0) = \frac{1}{h} \left(\int_a^{x_0 + h} f(t) dt - \int_a^{x_0} f(t) dt \right) - f(x_0)
= \frac{1}{h} \int_{x_0}^{x_0 + h} f(t) dt - f(x_0)
= \frac{1}{h} \left(\int_{x_0}^{x_0 + h} f(t) dt - hf(x_0) \right)
= \frac{1}{h} \left(\int_{x_0}^{x_0 + h} f(t) dt - \int_{x_0}^{x_0 + h} f(x_0) dt \right)
= \frac{1}{h} \int_{x_0}^{x_0 + h} (f(t) - f(x_0)) dt.$$

Or

$$\left| \int_{x_0}^{x_0+h} (f(t) - f(x_0)) dt \right| \leq \left| \int_{x_0}^{x_0+h} |f(t) - f(x_0)| dt \right| \leq \left| \int_{x_0}^{x_0+h} \sup_{t \in [x_0, x_0+h]} |f(t) - f(x_0)| dt \right| = |h| \sup_{t \in [x_0, x_0+h]} |f(t) - f(x_0)| dt$$

donc :

$$\left| \frac{F(x_0 + h) - F(x_0)}{h} - f(x_0) \right| \le \sup_{t \in [x_0, x_0 + h]} |f(t) - f(x_0)|.$$

Or f est continue en x_0 , donc $\lim_{t \to x_0} f(t) = f(x_0)$ et donc $\lim_{h \to 0} \sup_{t \in [x_0, x_0 + h]} |f(t) - f(x_0)| = 0$. Ainsi $\lim_{h \to 0} \left| \frac{F(x_0 + h) - F(x_0)}{h} - f(x_0) \right| = 0$, d'où $\lim_{h \to 0} \frac{F(x_0 + h) - F(x_0)}{h} = f(x_0)$. \square

Corollaire 18 Toute fonction continue sur un intervalle y admet des primitives.

Corollaire 19 Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur [a,b]. Soit F une primitive de f sur [a,b]. Alors :

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

que l'on note $[F(x)]_a^b$.

Démonstration :

D'après le théorème 17, la fonction G définie par $G(x) = \int_a^x f(t) dt$ est une primitive de f sur [a,b]. La fonction F aussi. Il existe donc une constante $c \in \mathbb{R}$ telle que F = G + c. Or G(a) = 0, donc F(a) = c. On a ainsi $\int_a^b f(t) dt = G(b) = F(b) - c = F(b) - F(a)$. \square

Remarque : La notation $\int f(x) dx$ (intégrale indéfinie) désigne une primitive quelconque de f.

3 Techniques de calcul de primitives

• INTÉGRATION PAR PARTIES, CHANGEMENT DE VARIABLE (RAPPELS)

Proposition 20 Soient u et v deux fonctions de classe C^1 sur I. Soient $a, b \in I$. Alors:

$$\int_{a}^{b} u(x)v'(x) dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u'(x)v(x) dx.$$

Pour les intégrales indéfinies on a :

$$\int u(x)v'(x) dx = u(x)v(x) - \int u'(x)v(x) dx.$$

Proposition 21 Soit $f: I \to \mathbb{R}$ une fonction continue sur I. Soit $\varphi: [\alpha, \beta] \to \mathbb{R}$ une fonction de classe C^1 sur $[\alpha, \beta]$ telle que $\varphi([\alpha, \beta]) \subset I$. Alors:

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) dt = \int_{\alpha}^{\beta} f(\varphi(x)) \varphi'(x) dx.$$

Deux applications de la formule du changement de variable :

Proposition 22 Soit $f: [-a, a] \to \mathbb{R}$ une fonction continue. Si f est paire, alors $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$, et si f est impaire, alors $\int_{-a}^{a} f(x) dx = 0$.

Démonstration : Par la relation de Chasles on a

$$\int_{-a}^{a} f(x) dx = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx,$$

et le changement de variable y=-x dans la première intégrale donne

$$\int_{-a}^{0} f(x) dx = -\int_{a}^{0} f(-y) dy = \int_{0}^{a} f(-y) dy = \int_{0}^{a} f(-x) dx = \begin{cases} \int_{0}^{a} f(x) dx & \text{si } f \text{ est paire} \\ -\int_{0}^{a} f(x) dx & \text{si } f \text{ est impaire} \end{cases}.$$

Le résultat s'ensuit.

Proposition 23 Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue et T-périodique. Alors, pour tout $a \in \mathbb{R}$,

$$\int_{a}^{a+T} f(x) dx = \int_{0}^{T} f(x) dx.$$

Démonstration : Par la relation de Chasles on a

$$\int_{0}^{a+T} f(x) dx = \int_{0}^{0} f(x) dx + \int_{0}^{T} f(x) dx + \int_{T}^{a+T} f(x) dx.$$

Dans la dernière intégrale on effectue le changement de variable y=x-T

$$\int_{T}^{a+T} f(x) \, dx = \int_{0}^{a} f(y+T) \, dy = \int_{0}^{a} f(y) \, dy = \int_{0}^{a} f(x) \, dx = -\int_{a}^{0} f(x) \, dx.$$

Le résultat s'ensuit. \square

Exercice 2 Calculer les intégrales ou les primitives suivantes :

$$\int_0^1 \arctan x \, dx \; ; \; \int_0^{\frac{\pi}{2}} \frac{\sin x}{1 + \cos^2 x} \, dx \; ; \; \int_0^1 \sqrt{1 - x^2} \, dx \; ; \; \int \frac{dx}{\operatorname{ch} x} \; ; \; \int \frac{dx}{\operatorname{sh} x} \; ; \; \int \frac{dx}{\operatorname{th} x}.$$

• Polynômes en sinus et cosinus

Soit à déterminer une primitive de la fonction $f: x \mapsto \cos^p x \sin^q x \ (p, q \in \mathbb{N}).$

Si p ou q est impair, alors on peut mettre f(x) sous la forme $P(\cos x)\sin x$ ou $P(\sin x)\cos x$ (en utilisant éventuellement la relation $\cos^2 x + \sin^2 x = 1$) et le changement de variable $y = \cos x$ ou $y = \sin x$ permet de conclure.

Si p et q sont pairs, alors on peut soit passer à l'angle double (avec $\cos^2 x = \frac{1 + \cos 2x}{2}$ ou $\sin^2 x = \frac{1 - \cos 2x}{2}$), soit linéariser à l'aide des formules d'Euler.

Exercice 3 Calculer les intégrales suivantes :

$$\int_0^{\frac{\pi}{2}} \cos^2 x \, dx \; ; \; \int_0^{\frac{\pi}{2}} \cos^3 x \, dx \; ; \; \int_0^{\frac{\pi}{2}} \cos^4 x \, dx \; ; \; \int_0^{\frac{\pi}{2}} \cos^5 x \, dx.$$

• Polynômes en e^x , $\operatorname{ch} x$, $\operatorname{sh} x$, $\cos x$, $\sin x$

On passe aux exponentielles et on utilise le fait que $\cos x = \text{Re}(e^{ix})$ et $\sin x = \text{Im}(e^{ix})$. On peut aussi intégrer deux fois par parties.

Exercice 4 Déterminer une primitive sur \mathbb{R} des fonctions $x \mapsto e^x \cos x$ et $x \mapsto e^x \cot x$.

• Produit d'un polynôme et de e^x , $\operatorname{ch} x$, $\operatorname{sh} x$, $\cos x$ ou $\sin x$

On effectue une ou plusieurs intégrations par parties successives afin de diminuer le degré du polynôme (on dérive donc le polynôme et on intègre l'autre fonction).

Exercice 5 Déterminer une primitive sur \mathbb{R} de la fonction $x \mapsto x^2 e^{-3x}$.

IV Formules de Taylor

1 Formule de Taylor avec reste intégral (non exigible)

Théorème 24 Soit $f: I \to \mathbb{R}$ une fonction de classe C^{n+1} sur I. Soit $a \in I$. Alors, pour tout $x \in I$:

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \ldots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \frac{1}{n!} \int_a^x f^{(n+1)}(t)(x-t)^n dt.$$

Démonstration :

On raisonne par récurrence sur $n \in \mathbb{N}$.

Pour n=0 : On suppose que f est de classe \mathcal{C}^1 sur I. Pour tout $x\in I$ on a :

$$f(a) + \frac{1}{0!} \int_{a}^{x} f^{(1)}(t)(x-t)^{0} dt = f(a) + \int_{a}^{x} f'(t) dt = f(a) + f(x) - f(a) = f(x),$$

donc la proposition est vraie pour n = 0.

Soit $n \in \mathbb{N}$. Supposons le théorème vrai au rang n et montrons-le au rang n+1. On suppose donc que f est de classe \mathcal{C}^{n+2} sur I. Par hypothèse de récurrence on a, pour tout $x \in I$:

$$f(x) = f(a) + f'(a)(x - a) + \ldots + \frac{f^{(n)}(a)}{n!}(x - a)^n + \frac{1}{n!} \int_a^x f^{(n+1)}(t)(x - t)^n dt.$$
 (*)

On va intégrer par parties : on pose $u(t) = f^{(n+1)}(t)$, donc $u'(t) = f^{(n+2)}(t)$, et pour avoir $v'(t) = (x-t)^n$ on prend $v(t) = -\frac{(x-t)^{n+1}}{n+1}$. On obtient :

$$\int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} dt = \left[-\frac{(x-t)^{n+1}}{n+1} f^{(n+1)}(t) \right]_{a}^{x} + \int_{a}^{x} \frac{(x-t)^{n+1}}{n+1} f^{(n+2)}(t) dt$$
$$= \frac{f^{(n+1)}(a)}{n+1} (x-a)^{n+1} + \frac{1}{n+1} \int_{a}^{x} f^{(n+2)}(t)(x-t)^{n+1} dt$$

Par conséquent, (*) devient :

$$f(x) = f(a) + f'(a)(x-a) + \ldots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \frac{1}{n!} \left(\frac{f^{(n+1)}(a)}{n+1}(x-a)^{n+1} + \frac{1}{n+1} \int_a^x f^{(n+2)}(t)(x-t)^{n+1} dt \right)$$

$$= f(a) + f'(a)(x-a) + \ldots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \frac{f^{(n+1)}(a)}{(n+1)!}(x-a)^{n+1} + \frac{1}{(n+1)!} \int_a^x f^{(n+2)}(t)(x-t)^{n+1} dt,$$

ce qui achève la récurrence. \Box

La formule de Taylor avec reste intégral donne l'erreur commise en remplaçant f(x) par $T_n(x) = f(a) + f'(a)(x-a) + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$ sous forme d'une intégrale. En majorant ou en encadrant cette intégrale on peut ainsi obtenir une majoration ou un encadrement de $f(x) - T_n(x)$.

2 Inégalité de Taylor-Lagrange

Théorème 25 Soit $f: I \to \mathbb{R}$ une fonction de classe C^{n+1} sur I. Soit $a \in I$. Si M est un majorant de $|f^{(n+1)}|$ sur I, alors, pour tout $x \in I$, on a:

$$|f(x) - T_n(x)| \le \frac{M}{(n+1)!} |x - a|^{n+1},$$

$$où T_n(x) = f(a) + f'(a)(x - a) + \ldots + \frac{f^{(n)}(a)}{n!}(x - a)^n.$$

Démonstration :

D'après la formule de Taylor avec reste intégral on a $|f(x) - T_n(x)| = \frac{1}{n!} \left| \int_a^x f^{(n+1)}(t)(x-t)^n dt \right|$

Supposons $x \ge a$. Alors:

$$|f(x) - T_n(x)| \leqslant \frac{1}{n!} \int_a^x \left| f^{(n+1)}(t)(x-t)^n \right| dt \leqslant \frac{1}{n!} \int_a^x M(x-t)^n dt = \frac{M}{n!} \left[-\frac{(x-t)^{n+1}}{n+1} \right]_a^x = \frac{M}{n!} \frac{(x-a)^{n+1}}{n+1} = \frac{M(x-a)^{n+1}}{(n+1)!}.$$

Si x < a les calculs sont analogues mais on commence par remettre les bornes dans le bon ordre. \square

Cette inégalité permet d'obtenir des encadrements. On notera que pour n=0 on retrouve l'inégalité des accroissements finis. Noter également que ce théorème et le précédent restent valables pour les fonctions à valeurs complexes.

Exercice 5 Etablir, pour tout $x \in \mathbb{R}$, l'encadrement $1 - \frac{x^2}{2} - \frac{x^4}{24} \leqslant \cos x \leqslant 1 - \frac{x^2}{2} + \frac{x^4}{24}$.

Exercice 6 Montrer que, pour tout $x \in \mathbb{R}$, $\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{x^k}{k!} = e^x$.

3 Formule de Taylor-Young (rappel)

Théorème 26 Soit $f: I \to \mathbb{R}$ une fonction de classe C^n $(n \in \mathbb{N}^*)$. Alors f admet un DL d'ordre n en tout point $a \in I$. Plus précisément, au voisinage de a, on a:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + o((x-a)^n)$$

$$= f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f^{(3)}(a)}{3!} (x-a)^3 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n + o((x-a)^n).$$

Démonstration

D'après la formule de Taylor avec reste intégral, on a $f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{1}{(n-1)!} \int_a^x f^{(n)}(t) (x-t)^{n-1} dt$ pour tout $x \in I$.

L'idée est d'écrire $\int_a^x f^{(n)}(t)(x-t)^{n-1}dt = \int_a^x f^{(n)}(a)(x-t)^{n-1}dt + \int_a^x (f^{(n)}(t) - f^{(n)}(a))(x-t)^{n-1}dt.$ La première intégrale vaut $f^{(n)}(a) \int_a^x (x-t)^{n-1}dt = f^{(n)}(a) \frac{(x-a)^n}{n}.$

Soit $x \ge a$. Puisque $f^{(n)}$ est continue sur [a, x], elle y est bornée. Posons $M(x) = \sup_{a \le t \le x} |f^{(n)}(t) - f^{(n)}(a)|$.

Alors
$$\left| \int_a^x (f^{(n)}(t) - f^{(n)}(a))(x-t)^{n-1} dt \right| \le \int_a^x |f^{(n)}(t) - f^{(n)}(a)|(x-t)^{n-1} dt \le \int_a^x M(x)(x-t)^{n-1} dt = \frac{M(x)(x-a)^n}{n}.$$

Si
$$x \le a$$
, on obtient $\left| \int_a^x (f^{(n)}(t) - f^{(n)}(a))(x-t)^{n-1} dt \right| \le \frac{M(x)(-1)^n (x-a)^n}{n}$ avec $M(x) = \sup_{x \le t \le a} |f^{(n)}(t) - f^{(n)}(a)|$.

Or M(x) tend vers 0 lorsque x tend vers a (par continuité de $f^{(n)}$), donc $\frac{M(x)(x-a)^n}{n} \stackrel{x \to a}{=} o((x-a)^n)$.

On obtient ainsi $f(x) \stackrel{x \to a}{=} \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k + f^{(n)}(a) \frac{(x-a)^n}{n!} + o((x-a)^n)$: c'est ce qu'on voulait. \square