Corrigé DM23

Exercice: Rendement d'un moteur thermique théorique

1.
$$n = \frac{P_0 V_A}{RT_0} = 13.2 \times 10^{-3} \,\text{mol}$$

- **2.** Les transformations $0 \longrightarrow 1$ et $2 \longrightarrow 3$ sont **isochores** car le volume du système reste constant.
- 3. Les transformations $1 \longrightarrow 2$ et $3 \longrightarrow 0$ sont **isobares** car elles sont quasi-statiques et le système est en équilibre mécanique avec l'extérieur, de pression constante : $P_{ext} = P_0 + mg/S$ pour la transformation $1 \longrightarrow 2$ et $P_{ext} = P_0$ pour la transformation $3 \longrightarrow 0$.
- **4.** L'équilibre mécanique du piston dans les états 1 à 3 impose que $P_1 = P_2 = P_0 + \frac{mg}{S} = 1,1$ bar $P_3 = P_0 = 1$ bar.

La transformation
$$0 \longrightarrow 1$$
 est isochore, donc $\frac{P_0}{T_0} = \frac{P_1}{T_1} \Longrightarrow \boxed{T_1 = \frac{P_1}{P_0} T_0 = 330 \,\mathrm{K}}$

La transformation
$$1 \longrightarrow 2$$
 est isobare, donc $\frac{V_A}{T_1} = \frac{V_B}{T_2} \Longrightarrow \boxed{T_2 = \frac{V_B}{V_A} T_1 = 1000 \, \text{K}}$

La transformation 2
$$\longrightarrow$$
 3 est isochore, donc $\frac{P_2}{T_2} = \frac{P_3}{T_3} \Longrightarrow \boxed{T_3 = \frac{P_3}{P_2}T_2 = 909 \,\mathrm{K}}$

5. Sur un diagramme de Clapeyron, l'allure du cycle est la suivante. Le diagramme est parcouru dans le sens horaire, il est bien moteur.

6.
$$0 \to 1$$
 est isochore : $Q_{01} = \Delta U_{01} = \frac{nR}{\gamma - 1} (T_1 - T_0) = 8{,}25 \,\mathrm{J}$

7.
$$1 \to 2$$
 est isobare : $Q_{12} = \Delta H_{12} = \frac{\gamma nR}{\gamma - 1} (T_2 - T_1) = 258 \text{ J}$

8. Le travail reçu sur un cycle est égal en valeur absolue à l'aire à l'intérieur du cycle. Ici, $W_{cycle} < 0$ car le cycle est moteur. Puisque le cycle est rectangulaire, on peut exprimer simplement :

$$P_{0} + \frac{mg}{S} \longrightarrow \begin{array}{c} 1 & 2 \\ 0 & 3 \\ V_{A} & V_{B} \end{array}$$

$$W_{\text{cycle}} = -\frac{mg}{S} \times (V_B - V_A) = -6,7 \text{ J}$$

9. Le rendement vaut
$$\eta = -\frac{W_{\text{cycle}}}{Q_{01} + Q_{12}} = 0,025$$

Le rendement est bien plus faible que celui d'un moteur à explosion. Il ne s'agit là que d'un cycle théorique simple à étudier mathématiquement mais sans grande utilité pratique.

Remarque: $W_{\text{cycle}} = -mg \times \frac{V_B - V_A}{S} = -mg(z_B - z_A)$ où z_B et z_A sont l'altitude de la masse m dans les états $\overline{1}$ et $\overline{2}$. Le travail fourni par ce moteur sert uniquement à soulever la masse m des cales du bas jusqu'aux cales du haut. À priori, il y a sans doute plus simple et plus efficace énergétiquement que cette méthode...

Exercice: Rendement d'un moteur thermique théorique

1.
$$n = \frac{P_0 V_A}{RT_0} = 13,2 \times 10^{-3} \,\text{mol}$$

- **2.** Les transformations $0 \longrightarrow 1$ et $2 \longrightarrow 3$ sont **isochores** car le volume du système reste constant.
- **3.** Les transformations $1 \longrightarrow 2$ et $3 \longrightarrow 0$ sont **isobares** car elles sont quasi-statiques et le système est en équilibre mécanique avec l'extérieur, de pression constante : $P_{ext} = P_0 + mg/S$ pour la transformation $1 \longrightarrow 2$ et $P_{ext} = P_0$ pour la transformation $3 \longrightarrow 0$.
- **4.** L'équilibre mécanique du piston dans les états 1 à 3 impose que $P_1 = P_2 = P_0 + \frac{mg}{S} = 1,1$ bar $P_3 = P_0 = 1$ bar.

La transformation
$$0 \longrightarrow 1$$
 est isochore, donc $\frac{P_0}{T_0} = \frac{P_1}{T_1} \Longrightarrow \left| T_1 = \frac{P_1}{P_0} T_0 = 330 \, \mathrm{K} \right|$

La transformation
$$1 \longrightarrow 2$$
 est isobare, donc $\frac{V_A}{T_1} = \frac{V_B}{T_2} \Longrightarrow \boxed{T_2 = \frac{V_B}{V_A} T_1 = 1000 \,\mathrm{K}}$

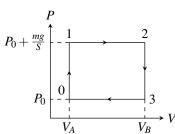
La transformation 2
$$\longrightarrow$$
 3 est isochore, donc $\frac{P_2}{T_2} = \frac{P_3}{T_3} \Longrightarrow \left| T_3 = \frac{P_3}{P_2} T_2 = 909 \,\mathrm{K} \right|$

5. Sur un diagramme de Clapeyron, l'allure du cycle est la suivante. Le diagramme est parcouru dans le sens horaire, il est bien moteur.

6.
$$0 \to 1$$
 est isochore : $Q_{01} = \Delta U_{01} = \frac{nR}{\gamma - 1} (T_1 - T_0) = 8,25 \, \mathrm{J}$

7.
$$1 \to 2$$
 est isobare : $Q_{12} = \Delta H_{12} = \frac{\gamma nR}{\gamma - 1} (T_2 - T_1) = 258 \,\text{J}$

8. Le travail reçu sur un cycle est égal en valeur absolue à l'aire à l'intérieur du cycle. Ici, $W_{cycle} < 0$ car le cycle est moteur. Puisque le cycle est rectangulaire, on peut exprimer simplement :



$$W_{\text{cycle}} = -\frac{mg}{S} \times (V_B - V_A) = -6.7 \,\text{J}$$

9. Le rendement vaut
$$\eta = -\frac{W_{\text{cycle}}}{Q_{01} + Q_{12}} = 0,025$$

Le rendement est bien plus faible que celui d'un moteur à explosion. Il ne s'agit là que d'un cycle théorique simple à étudier mathématiquement mais sans grande utilité pratique.

Remarque: $W_{\text{cycle}} = -mg \times \frac{V_B - V_A}{S} = -mg(z_B - z_A)$ où z_B et z_A sont l'altitude de la masse m dans les états 1 et 2. Le trava