

Interrogation de cours : Changements d'état d'un corps pur

1. Tracer l'allure du diagramme de phase et du diagramme de Clapeyron d'un corps pur. Indiquer les domaines et les points particuliers.

Su

Non su

2. La température étant fixée, déterminer l'état physique d'un corps pur en fonction de la pression (on envisage ici uniquement les états liquide et gaz).

 $P < P_{\text{sat}}(T)$: vapeur

 $P = P_{\text{sat}}(T)$: eq diphasé liquide/vapeur

 $P > P_{\text{sat}}(T)$: liquide

3. Un mélange diphasé liquide-vapeur est tel que le titre massique en phase vapeur vaut $x_V = 0.75$. Placer cet état d'équilibre sur le diagramme de Clapeyron de la question 1. Exprimer le volume massique v du mélange à l'aide du théorème des moments, en fonction de deux volumes massiques v_L et v_V que vous indiquerez sur le diagramme de Clapeyron.

$$v = x_L v_L + x_V v_V = (1 - x_V) v_L + x_V v_V$$

4. Définir le degré d'hygrométrie d'un air humide. À quelle condition l'air est-il saturé en eau ?

$$H = \frac{P_{\rm eau}}{P_{\rm sat}(T)}$$
 avec $P_{\rm eau}$ la pression partielle en vapeur d'eau.

L'air est saturé en eau si et seulement si $\overline{H=1}$.

5. Exprimer la variation d'enthalpie ΔH et la variation d'entropie ΔS au cours du changement d'état $1 \to 2$ à température T et pression $P_{\text{sat}}(T)$ constantes d'une masse m d'un corps pur.

$$\Delta H = mL_{1\rightarrow 2}(T)$$
 ; $\Delta S = m\Delta s_{1\rightarrow 2}(T) = \frac{mL_{1\rightarrow 2}(T)}{T}$