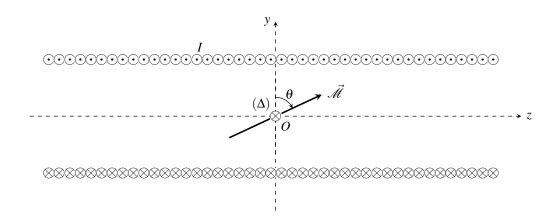
DM de physique n° 28

Exercice 1: Champ produit par une distribution de courants

On considère une infinité de fils conducteurs rectilignes, de longueur infinie, parallèles entre eux et répartis uniformément le long d'un axe, tous parcourus par un courant de même intensité I (voir figure ci-dessous).



- 1. Après avoir choisi un système des coordonnées adapté, simplifier au maximum l'expression du champ magnétique $\vec{B}(M)$ produit par ces courants en un point M quelconque de l'espace, en s'appuyant sur un analyse des symétries et des invariances.
- **2.** Quelle est l'allure des lignes de champs ? Quelle propriété du champ pouvez-vous en tirer ? Indiquer comment sont orientées les lignes de champ.

Exercice 2 : Équilibre d'une aiguille aimantée dans un champ extérieur

Une bobine est constituée de N=2000 spires enroulées en forme de solénoïde d'axe (Oz), de rayon r=5cm et de longueur L=60cm, parcourues par un courant continu d'intensité I. Une aiguille aimantée de moment magnétique \vec{M} est placée au centre de la bobine, en O. Cette aiguille est libre de pivoter autour d'un pivot idéal d'axe (Δ) . Elle est fixée à un ressort spiral qui exerce sur elle un couple de rappel $\Gamma=-C\theta$, avec θ la position angulaire de l'aiguille, représentée sur la figure ci-dessous.

Données: $\mathcal{M} = 7 \cdot 10^{-3} \,\mathrm{A \cdot m^2}$, $C = 3 \cdot 10^{-6} \,\mathrm{kg \cdot m^2 \cdot s^{-2}}$, $\mu_0 = 4\pi \cdot 10^{-7} \,\mathrm{H \cdot m^{-1}}$.

1. Montrer qu'à l'équilibre la position angulaire angulaire de l'aiguille est solution de

$$\cos \theta_{\rm eq} = \beta \theta_{\rm eq}$$

avec une constante β à exprimer en fonction des données du problème. *Indication*: Le couple de Laplace par rapport à (Δ) s'obtient par projection: $\Gamma_{\text{lap}} = \vec{\Gamma}_{\text{lap}} \cdot \vec{u}_{\Delta}$.

2. Calculer I pour que l'aiguille puisse se maintenir en équilibre dans la position $\theta = \pi$.