Devoir n°32 (non surveillé)

Soit n un entier supérieur ou égal à 1.

On considère une urne contenant n boules numérotées de 1 à n et indiscernables au toucher. On effectue une suite de tirages d'une boule avec remise de la boule dans l'urne.

Pour tout entier k supérieur ou égal à 1, on note Z_k la variable aléatoire égale au nombre de numéros distincts obtenus au cours des k premiers tirages. On note $E(Z_k)$ l'espérance de Z_k et $V(Z_k)$ sa variance.

Par exemple, si les premières boules tirées portent les numéros 2, 5, 2, 1, 2 et 5, alors $Z_1 = 1$, $Z_2 = 2$, $Z_3 = 2$, $Z_4 = 3$, $Z_5 = 3$ et $Z_6 = 3$.

Les parties I et II sont indépendantes.

Partie I

On pourra admettre que si A_1, A_2 et A_3 sont trois événements d'un espace probabilisé (Ω, P) , alors

$$P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3) - P(A_1 \cap A_2) - P(A_1 \cap A_3) - P(A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_3).$$

Soit k un entier supérieur ou égal à 1.

- 1) On suppose dans cette question uniquement que n=1. Quelle est la loi de Z_k ? Quelle est son espérance?
- 2) On suppose dans cette question uniquement que n=2.
 - a) Déterminer la loi de Z_k .
 - b) Calculer l'espérance de Z_k et la limite de celle-ci lorsque k tend vers $+\infty$.

On suppose dans la suite de cette partie que n=3; ainsi l'urne contient trois boules numérotées de 1 à 3. On se propose de déterminer la loi de Z_k .

- 3) Déterminer $P(Z_k = 1)$ et $P(Z_k \ge 4)$.
- 4) Pour tout $i \in \{1, 2, 3\}$ on note A_i l'événement "la boule numéro i n'est pas sortie au cours des k premiers tirages".
 - a) Montrer que $P(Z_k \leq 2) = 3P(A_1) 3P(A_1 \cap A_2) + P(A_1 \cap A_2 \cap A_3)$.
 - b) Calculer $P(A_1)$, $P(A_1 \cap A_2)$ et $P(A_1 \cap A_2 \cap A_3)$.
 - c) En déduire $P(Z_k \leq 2)$ puis $P(Z_k = 2)$ et $P(Z_k = 3)$.
 - d) Calculer l'espérance de Z_k et la limite de celle-ci lorsque k tend vers $+\infty$.

Partie II

Dans cette partie n est un entier supérieur ou égal à 2.

- 1) a) Déterminer la loi de Z_1 puis calculer $E(Z_1)$ et $V(Z_1)$.
 - b) Déterminer la loi de \mathbb{Z}_2 puis calculer $\mathbb{E}(\mathbb{Z}_2)$ et $\mathbb{V}(\mathbb{Z}_2)$.
- 2) a) Soit $k \in \mathbb{N}^*$. Déterminer $P(Z_k = 1)$.
 - b) Soit $k \in \{1, ..., n\}$. Déterminer $P(Z_k = k)$.
- 3) Soit k un entier supérieur ou égal à 1.
 - a) Soient $i, j \in \{1, \dots, n\}$. Calculer $P(Z_{k+1} = j \mid Z_k = i)$. On distinguera trois cas : i = j, i = j 1 et $i \notin \{j 1, j\}$.
 - b) Montrer que, pour tout $j \in \{1, ..., n\}$, $P(Z_{k+1} = j) = \frac{j}{n} P(Z_k = j) + \frac{n-j+1}{n} P(Z_k = j-1)$.
 - c) En déduire que $E(Z_{k+1}) = \frac{n-1}{n}E(Z_k) + 1$ (les calculs sont délicats).
- 4) a) Montrer que la suite $(v_k)_{k\geqslant 1}$ de terme général $v_k=E(Z_k)-n$ est une suite géométrique.
 - b) En déduire que, pour tout entier k supérieur ou égal à 1, $E(Z_k) = n\left(1 \left(\frac{n-1}{n}\right)^k\right)$.
 - c) Déterminer la limite de $E(Z_k)$ lorsque k tend vers $+\infty$ et en donner une interprétation.
 - d) Déterminer la limite de $E(Z_k)$ lorsque n tend vers $+\infty$ et en donner une interprétation.