Fiche d'exercices : Séries

Exercice 1 Étudier la convergence de la série de terme général :

1.
$$\frac{n+1}{n^2+n+1}$$
2.
$$\frac{n^2}{2^n+n}$$
3.
$$\frac{1}{\ln n}$$

4.
$$\frac{(-1)^n}{\ln n}$$

5. $\cosh \frac{1}{n} - \cos \frac{1}{n}$

6.
$$\sqrt[3]{n^3 + an} - \sqrt{n^2 + 3}$$

7.
$$n^{\frac{1}{n}} - 1$$
8. $\frac{1}{n^{1+\frac{1}{n}}}$

9.
$$\frac{1}{n \ln n \ln(\ln n)}$$

$$10. \, \binom{2n}{n}^{-1}$$

$$11. \ \frac{1}{\sqrt[n]{n+1}}$$

$$12. \ln \frac{1}{\sqrt{n}} - \ln \sin \frac{1}{\sqrt{n}}$$

13.
$$\frac{n^n}{n!a^n} \text{ avec } a > 0$$

14.
$$\frac{(-1)^n}{n^2 + 1}$$
15. $\frac{n^n}{(2n)!}$

$$16. \frac{1}{n} \cos \frac{2n\pi}{3}$$

17.
$$\frac{1}{\sqrt{n} + n^{2(-1)^n}}$$

$$18. \left(1 + \frac{1}{\sqrt[3]{n}}\right)^{-\sqrt{n}}$$

$$19. \left(1 + \frac{1}{n}\right)^n - e.$$

$$20. \left(\frac{n}{n+1}\right)^{n^2}$$

$$21. \sqrt[n]{n+1} - \sqrt[n]{n}$$

$$22. \prod_{k=2}^{n} \frac{\ln k}{k}$$

23.
$$\binom{2n}{n}a^n$$
 avec $a > 0$

24.
$$\sqrt[n]{n} - \sqrt[n+1]{n}$$

$$25. \left(n\sin\frac{1}{n}\right)^n - 1$$

$$26. \ \frac{(\ln n)^n}{n!}$$

$$27. \left(\sqrt{n+1} - \sqrt{n}\right)^{\sqrt{n}}$$

28. Arccos
$$\frac{n^2 + n + 1}{n^2 + n + 3}$$

Exercice 2 Étudier la convergence et calculer la somme de la série de terme général :

1.
$$\frac{1}{n(n+1)}$$
2. $\frac{1}{n(n+1)(n+2)}$
4. $\frac{n}{2^n}$
5. $\frac{1}{n2^n}$
8. $\ln\left(1 + \frac{(-1)^n}{n}\right)$

$$\begin{array}{c}
2^n \\
5. \frac{1}{n^{2n}}
\end{array}$$

$$n^4 + n^2 + 1$$

8. $\ln \left(1 + \frac{(-1)^2}{2}\right)$

3.
$$\ln\left(\frac{n^2 + 3n + 2}{n^2 + 3n}\right)$$
 6. $\ln\left(1 - \frac{1}{n^2}\right)$ 9. $\frac{x^n}{(1 - x^n)(1 - x^{n+1})}$

9.
$$\frac{x^n}{(1-x^n)(1-x^{n+1})}$$

Exercice 3 Étudier la convergence de la série $\sum u_n$ où $u_n = \frac{1}{n}$ si n est un carré et $\frac{1}{n^2}$ sinon.

Exercice 4 Étudier la convergence de la série $\sum (\sqrt{n} + a\sqrt{n+1} + b\sqrt{n+2})$, où $a, b \in \mathbb{R}$, et calculer sa somme lorsqu'elle converge.

Exercice 5 Montrer que la série $\sum Arctan \frac{1}{n^2 + n + 1}$ converge et calculer sa somme. On pourra montrer que : $\forall x > 0$, Arctan $\frac{1}{x^2 + x + 1} = \operatorname{Arctan} \frac{1}{x} - \operatorname{Arctan} \frac{1}{x + 1}$.

Exercice 6 Étudier la convergence de la série $\sum_{n>1} \frac{(-1)^{n+1}}{n}$ et calculer sa somme en utilisant le fait que $\frac{1}{k+1} = \int_0^1 t^k dt$.

Exercice 7 (Séries de Bertrand) Étudier, en fonction des réels α et β , la convergence de la série $\sum_{n \geq 2} \frac{1}{n^{\alpha} (\ln n)^{\beta}}$.

Exercice 8 À l'aide des séries, montrer que la suite de terme général $1 + \frac{1}{2} + \ldots + \frac{1}{n} - \ln n$ est convergente.

Exercice 9 Montrer que la suite de terme général $\frac{n!e^n}{n^{n+1/2}}$ a une limite finie non nulle. On pourra considérer la série de terme général $\ln u_{n+1} - \ln u_n$.

Exercice 10 Donner un équivalent lorsque n tend vers $+\infty$ de :

$$\sum_{k=1}^{n} \frac{1}{k^a} (0 < a < 1) ; \sum_{k=n+1}^{+\infty} \frac{1}{k^a} (a > 1) ; \sum_{k=2}^{n} \frac{1}{k \ln k} ; \ln n!$$

Exercice 11 Pour tout $n \in \mathbb{N}$ on pose $u_n = \frac{r(n)}{n(n+1)}$ où r(n) est le reste dans la division euclidienne de n par 5.

1) Montrer que la série $\sum_{n\geq 1} u_n$ converge.

2) Soit $H(n) = \sum_{k=1}^{n} \frac{1}{k}$. Exprimer $S_{5n} = \sum_{k=1}^{5n} u_k$ en fonction de H(n+1) et H(5n+5).

3) En déduire la somme de la série en utilisant le fait que $H(n) = \ln n + \gamma + o(1)$ au voisinage de $+\infty$.

Exercice 12 Étudier la convergence et la convergence absolue des séries suivantes :

$$\sum_{n\geqslant 1} \frac{(-1)^n}{\sqrt{n}} \; \; ; \; \; \sum_{n\geqslant 1} \frac{(-1)^n \ln n}{n-\ln n} \; \; ; \; \; \sum \sin\left(\pi \sqrt{n^2+1}\right) \; \; ; \; \; \sum_{n\geqslant 2} \frac{(-1)^n}{\sqrt{n^a+(-1)^n}} \; (a>0).$$

Exercice 13 (Règle de Cauchy) Soit (u_n) une suite de réels positifs telle que $\sqrt[n]{u_n} \to \ell$ où $\ell \in \mathbb{R}^+$. Montrer que si $\ell > 1$, alors la série $\sum u_n$ diverge, que si $\ell < 1$, alors la série converge, et que si $\ell = 1$ on ne peut pas conclure.

Exercice 14 (Règle de Raabe-Duhamel) Soit (u_n) une suite de réels strictement positifs telle que $\frac{u_{n+1}}{u_n} = 1 - \frac{\alpha}{n} + o\left(\frac{1}{n}\right)$ lorsque $n \to +\infty$.

1) Montrer que si $\alpha < 1$, alors la série $\sum u_n$ diverge, et que si $\alpha > 1$, alors la série converge. On pourra comparer $\frac{u_{n+1}}{u_n}$ et $\frac{v_{n+1}}{v_n}$ où $v_n = \frac{1}{n^{\beta}}$.

2) Montrer que si $\alpha = 1$ on ne peut pas conclure. On pourra considérer des séries de Bertrand.