Fiche d'exercices: Fonctions de deux variables

Exercice 1 Montrer qu'une boule ouverte de \mathbb{R}^2 est un ouvert de \mathbb{R}^2 .

Exercice 2

- 1) Montrer que l'union de deux ouverts de \mathbb{R}^2 est un ouvert de \mathbb{R}^2 .
- 2) Montrer que l'intersection de deux ouverts de \mathbb{R}^2 est un ouvert de \mathbb{R}^2 .

Exercice 3 Dans chacun des cas suivants, déterminer le plus grand ouvert sur lequel la fonction f est de classe \mathcal{C}^1 et calculer ses dérivées partielles :

1)
$$f(x,y) = x^2y + 3x - 2y + 1$$
.
2) $f(x,y) = \sin(xy)$.
3) $f(x,y) = \frac{x}{x^2 + y^2}$.
4) $f(x,y) = \ln \frac{x}{y}$.
5) $f(x,y) = \operatorname{Arctan}(x^2 + y^2)$.
6) $f(x,y) = \operatorname{Arcsin}(x^2 + y^2)$.

4)
$$f(x,y) = \ln \frac{x}{y}$$

$$2) f(x,y) = \sin(xy)$$

5)
$$f(x,y) = Arctan(x^2 + y^2).$$

3)
$$f(x,y) = \frac{x}{x^2 + y^2}$$

6)
$$f(x,y) = Arcsin(x^2 + y^2)$$

Exercice 4 Étudier l'existence des dérivées partielles de la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par f(x, y) = |x| + |y|.

Exercice 5 Étudier l'existence des dérivées partielles de la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x, y) = \max(x, y)$.

Exercice 6 On considère la fonction définie par $f(x,y) = \ln(x+y) - \ln(x-y)$.

- 1) Déterminer l'ensemble de définition U de f.
- 2) Montrer que f est de classe C^1 sur U et calculer ses dérivées partielles.
- 3) Déterminer le développement limité de f à l'ordre 1 en (1,0) et l'équation du plan tangent à la surface d'équation z = f(x, y) au point correspondant.

Exercice 7 Déterminer l'équation du plan tangent en (1,2) à la surface d'équation $z = x^2 y$.

Exercice 8 Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une application de classe \mathcal{C}^1 et soit g la fonction définie sur \mathbb{R} par $q(t) = f(\operatorname{sh} t, \operatorname{ch} t)$. Montrer que q est de classe \mathcal{C}^1 sur \mathbb{R} et exprimer q'(t) en fonction des dérivées partielles de f.

Exercice 9 Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une application de classe \mathcal{C}^1 et soit g la fonction définie sur $A = \mathbb{R} \times \mathbb{R}_+^*$ par $g(s,t) = f\left(st, \frac{s}{t}\right)$. Montrer que g est de classe \mathcal{C}^1 sur A et exprimer les dérivées partielles de q en fonction de celles de f.

Exercice 10 Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une application de classe \mathcal{C}^1 . On définit la fonction F sur $\mathbb{R}^+ \times \mathbb{R} \text{ par } F(\rho, \theta) = f(\rho \cos \theta, \rho \sin \theta).$

- 1) Calculer $\frac{\partial F}{\partial \rho}(\rho, \theta)$ et $\frac{\partial F}{\partial \theta}(\rho, \theta)$.
- 2) En déduire l'expression de ∇f en fonction de $\frac{\partial F}{\partial \rho}$ et $\frac{\partial F}{\partial \theta}$ dans la base polaire $(\vec{e}_{\rho}, \vec{e}_{\theta})$.

Exercice 11 Soit f une fonction de classe \mathcal{C}^1 sur \mathbb{R}^2 .

- 1) Calculer les dérivées partielles de la fonction $q:(x,y)\mapsto f(y,x)$
- 2) Calculer la dérivée de la fonction $h: x \mapsto f(x, x)$.

Exercice 12 Déterminer les extrema locaux et globaux de la fonction f définie par $f(x,y) = x^2 - xy + y^2 + x + y$.

Exercice 13 Déterminer les extrema locaux et globaux de la fonction f définie par $f(x,y) = x^3 + xy^2 - x^2y - y^3$.