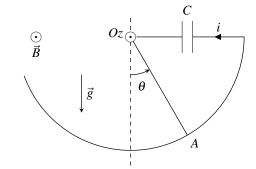

DM de physique n° 30

Exercice: Mouvement d'une tige conductrice

Une tige OA de longueur ℓ , masse m peut pivoter autour de l'axe (Oz). On note $I=\frac{1}{3}m\ell^2$ son moment d'inertie par rapport à (Oz). Elle est en contact avec un rail circulaire sur lequel elle glisse sans frottement. Le circuit (toujours fermé) se comporte un condensateur de capacité C (on néglige sa résistance et son inductance propre). Le champ magnétique est $\vec{B}=B\vec{u}_z$.

- 1. Établir l'équation électrique et l'équation mécanique du circuit vérifiées par l'intensité i(t) et la position angulaire $\theta(t)$.
- **2.** Calculer la pulsation ω_1 des petites oscillations.
- 3. On remplace le condensateur par une bobine idéale d'inductance L; calculer la nouvelle pulsation ω_2 (on supposera que i=0 lorsque $\theta=0$).


PCSIA

à préparer pour le 27/06/2025

DM de physique n° 30

Exercice : Mouvement d'une tige conductrice

Une tige OA de longueur ℓ , masse m peut pivoter autour de l'axe (Oz). On note $I=\frac{1}{3}m\ell^2$ son moment d'inertie par rapport à (Oz). Elle est en contact avec un rail circulaire sur lequel elle glisse sans frottement. Le circuit (toujours fermé) se comporte un condensateur de capacité C (on néglige sa résistance et son inductance propre). Le champ magnétique est $\vec{B}=B\vec{u}_z$.

- 1. Établir l'équation électrique et l'équation mécanique du circuit vérifiées par l'intensité i(t) et la position angulaire $\theta(t)$.
- **2.** Calculer la pulsation ω_1 des petites oscillations.
- 3. On remplace le condensateur par une bobine idéale d'inductance L; calculer la nouvelle pulsation ω_2 (on supposera que i=0 lorsque $\theta=0$).