Devoir n°1 (non surveillé)

EXERCICE 1

Résoudre dans $\mathbb R$ les équations suivantes :

$$\frac{1+\frac{2}{x}}{1+\frac{x}{2}} = 2 \; ; \; \sqrt{x} - \frac{1}{\sqrt{x}} = 1 \; ; \; e^{2x} - 5e^x + 6 = 0.$$

EXERCICE 2

Montrer que :

$$\forall n \in \mathbb{N}^*, \ \frac{1}{1^2} + \frac{1}{2^2} + \ldots + \frac{1}{n^2} \geqslant \frac{3n}{2n+1}.$$

EXERCICE 3

Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1,\ u_1=2$ et, pour tout $n\in\mathbb{N},\ u_{n+2}=\frac{u_{n+1}^2}{u_n}$. Déterminer l'expression de u_n en fonction de n.

EXERCICE 4

Montrer que toute fonction de \mathbb{R} dans \mathbb{R} peut se décomposer de manière unique comme somme d'une fonction constante et d'une fonction qui s'annule en 0.

Devoir n°1 (non surveillé)

EXERCICE 1

Résoudre dans $\mathbb R$ les équations suivantes :

$$\frac{1+\frac{2}{x}}{1+\frac{x}{2}} = 2 \; ; \; \sqrt{x} - \frac{1}{\sqrt{x}} = 1 \; ; \; e^{2x} - 5e^x + 6 = 0.$$

EXERCICE 2

Montrer que:

$$\forall n \in \mathbb{N}^*, \ \frac{1}{1^2} + \frac{1}{2^2} + \ldots + \frac{1}{n^2} \geqslant \frac{3n}{2n+1}.$$

EXERCICE 3

Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1,\ u_1=2$ et, pour tout $n\in\mathbb{N},\ u_{n+2}=\frac{u_{n+1}^2}{u_n}$. Déterminer l'expression de u_n en fonction de n.

EXERCICE 4

Montrer que toute fonction de \mathbb{R} dans \mathbb{R} peut se décomposer de manière unique comme somme d'une fonction constante et d'une fonction qui s'annule en 0.