DM de physique n° 4

Exercice: Observation de Proxima Centauri

L'étoile *Proxima Centauri* a été découverte en 1915 par l'astronome britannique Robert Innes, alors directeur de l'observatoire de l'Union à Johannesburg en Afrique du Sud. C'est une étoile de type naine rouge de rayon $R_E = 9.81 \cdot 10^4 \,\mathrm{km}$. Elle est située à $D_E = 3.99 \cdot 10^{13} \,\mathrm{km}$ soit 4,22 années-lumière du Soleil (on prendra approximativement la même distance par rapport à la Terre).

Pour voir l'étoile *Proxima Centauri*, un instrument d'optique est utilisé. Il est modélisé dans la suite par deux lentilles :

- une lentille convergente L_1 de distance focale $f'_1 = 8.0 \,\mathrm{m}$;
- une lentille divergente L_2 de projection, de distance focale image $f'_2 = -2,0$ cm. Cette lentille est utilisée pour former l'image finale sur un capteur photosensible.

Pour les constructions géométriques on pourra modifier les échelles pour une meilleure lisibilité.

- 1. Calculer la taille angulaire α de *Proxima Centauri* du point de vue d'un observateur situé sur Terre. Par la suite on modélisera cette étoile comme un objet étendu à l'infini.
- 2. L'instrument d'optique doit-il être afocal ? Justifier.
- 3. Où est située l'image de l'étoile par la lentille L_1 , appelée image intermédiaire A_1B_1 ? Illustrer cette situation par un schéma (sans représenter L_2).
- **4.** Déterminer l'expression de la taille de cette image intermédiaire A_1B_1 (non algébrique) en fonction du rayon R_E de l'étoile et des caractéristiques de la lentille L_1 .
- **5.** La lentille de projection L_2 , divergente, sert à faire de l'image intermédiaire A_1B_1 une image définitive A'B', réelle, droite et agrandie d'un facteur 4. Calculer la distance $\overline{F_1'F_2}$ pour respecter ces contraintes.
- **6.** Illustrer par un schéma la position de A_1B_1 , de A'B' et de L_2 (sans représenter L_1).
- 7. En 1915, l'image définitive A'B' de l'étoile se formait sur une plaque photographique de dimension $24 \,\mathrm{mm} \times 36 \,\mathrm{mm}$, composée de cristaux de $10 \,\mu\mathrm{m}$ de chlorure d'argent, précipité blanc qui noircit à la lumière. L'image définitive de l'étoile *Proxima Centauri* est-elle vue comme ponctuelle ou étendue sur la plaque photo ?
- 8. À l'occasion du centenaire de la découverte de Proxima du Centaure, en 2015, la photo de l'étoile a été reprise avec l'instrument d'optique de l'époque mais la plaque photographique a été remplacée par un capteur CCD de 100 millions de pixels, de taille identique à la plaque photo originelle. Sachant que les pixels sont des carrés, calculer leur surface S puis leur taille δ . L'image définitive de l'étoile *Proxima Centauri* est-elle vue comme ponctuelle ou étendue sur le capteur photosensible ?