Colle n°5

NOMBRES COMPLEXES

I Corps des nombres complexes

- 1. Forme algébrique d'un nombre complexe
- 2. Opérations dans $\mathbb C$
- 3. Représentation géométrique des nombres complexes
- 4. Conjugaison

II Forme trigonométrique d'un nombre complexe

- 1. Module d'un nombre complexe
- 2. Nombres complexes de module 1
- 3. Arguments d'un nombre complexe non nul

III Application à la trigonométrie

- 1. Expression de $\cos n\theta$ et $\sin n\theta$ en fonction de $\cos \theta$ et $\sin \theta$
- 2. Linéarisation de $\cos^n \theta$ et de $\sin^n \theta$
- 3. Transformation de $a\cos x + b\sin x$ en $A\cos(x-\varphi)$
- 4. Factorisation de $1 + e^{i\theta}$ et de $e^{ia} + e^{ib}$
- 5. Calcul de $\sum_{k=0}^{n} \cos kx$ et de $\sum_{k=0}^{n} \sin kx$

IV Équations dans $\mathbb C$

- 1. Racines n^e de l'unité
- 2. Équation $z^n = a \ (a \in \mathbb{C})$
- 3. Cas particulier : racines carrées
- 4. Équation du second degré à coefficients complexes

V Exponentielle complexe

- 1. Définition
- 2. Propriétés

VI Nombres complexes et géométrie

- 1. Angle orienté de deux vecteurs
- 2. Alignement et orthogonalité

Questions de cours :

- 1) Expression de $\cos(3\theta)$ et $\sin(3\theta)$ en fonction de $\cos(\theta)$ et $\sin(\theta)$ (exemple page 9).
- 2) Linéarisation de $\cos^3 \theta$ ou de $\sin^3 \theta$ (exemple page 10).
- 3) Calcul de $\sum_{k=0}^{n} \cos kx$ et de $\sum_{k=0}^{n} \sin kx$ (proposition 17 page 11).
- 4) Équation du second degré à coefficients complexes (proposition 21 page 14).