SUIS-JE AU POINT?

Chapitre 5 : Générateurs linéaires et circuits résistifs

- Une information utile, mais pas à mémoriser par cœur.
- ♥ Une définition/formule à connaître PAR CŒUR.
- Un savoir-faire à acquérir.
- TD Un exercice du TD pour s'entraîner.

1 Dipôles et lois d'évolutions

1.1 Introduction

Le comportement électrique d'un dipôle est caractérisé par la relation entre la tension u à ses bornes et l'intensité i du courant dans sa branche. Le sens de i et u doit être défini sans ambiguïté et **réprésenté sur un schéma avec une flèche**. Ce sens (et donc la convention générateur ou récepteur) est choisi arbitrairement.

1.2 Résistor

- Énoncer la loi d'Ohm (en convention récepteur et générateur).
- lackloss Définir la **conductance** d'un résistor et connaître son unité SI (*le siemens* : 1 S = 1 Ω^{-1})
- Exprimer la puissance consommée par un résistor $(\mathcal{P} = Ri^2 = \frac{u^2}{R})$.

1.3 Générateur linéaire

- 1.3.1 Source idéale de tension
- Définir une source idéale de tension.

1.3.2 Source idéale de courant

Définir une source idéale de courant.

1.3.3 Générateur linéaire

Définir un générateur linéaire et expliquer comment le représenter à l'aide du modèle de Thévenin.

2 Association de dipôles

2.1 Association de résistances en série :

2.1.1 Résistance équivalente

- Donner l'expression de la résistance équivalente d'une association de plusieurs résistors en série.
- Démonstration dans le cas de deux résistances en série.

2.1.2 Loi du pont diviseur de tension

- Énoncer la loi du pont diviseur de tension (illustrer avec un schéma bien annoté).
- Démonstration dans un cas simple (deux résistances en série).

2.2 Association de résistances en parallèle

2.2.1 Résistance équivalente

- Donner l'expression de la résistance équivalente d'une association de plusieurs résistances en parallèle.
- Démonstration dans le cas de deux résistances en parallèle.

2.2.2 Loi du pont diviseur de courant

- Énoncer la loi du pont diviseur de courant (illustrer sur un cas simple avec un schéma bien annoté).
- Démonstration dans un cas simple (deux résistances en parallèle).

3 Résistance d'entrée et de sortie

3.1 Résistance d'entrée d'un appareil de mesure

- En régime stationnaire un multimètre se comporte comme un résistor dont la résistance est appelée **résistance d'entrée**.
- La résistance d'entrée est élevée (de l'ordre de $10\,\mathrm{M}\Omega$) quand on utilise l'appareil en voltmètre et faible (entre $0,1\,\Omega$ et $100\,\Omega$ suivant le calibre) quand on l'utilise en ampèremètre. Ces valeurs sont choisies de sorte que la présence de l'appareil de mesure affecte le moins possible le comportement du circuit.
- \forall Définir un voltmètre idéal $(R_V = \infty)$ et un ampèremètre idéal $(R_A = 0)$.

3.2 Résistance de sortie d'un GBF

Du point de vue des autres composants d'un circuit électrique, un générateur basse fréquence (GBF) se comporte comme un générateur linéaire dont la résistance interne R_s , appelée **résistance de sortie**, est égale à 50 Ω .

4 Caractéristique statique d'un dipôle

4.1 Définition

Définir une caractéristique statique.

4.2 Résistor

Justifier l'allure de la caractéristique statique d'un résistor en s'appuyant sur la loi d'Ohm (préciser la convention choisie!).

4.3 Générateur linéaire

Justifier l'allure de la caractéristique statique d'un générateur linéaire (en convention générateur). Expliquer comment lire les valeur de la force électromotrice E et de la résistance interne r sur le graphe.

4.4 Point de fonctionnement

Expliquer comment déterminer le point de fonctionnement d'un circuit constitué de deux dipôles dont on connaît les caractéristiques statiques.