Devoir n°6 (non surveillé)

EXERCICE 1 - Cosinus et sinus d'un nombre complexe

Pour tout nombre complexe z on pose :

$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$$
 et $\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$.

- 1) Calculer $\cos\left(\frac{\pi}{3} + i\frac{\ln 2}{2}\right)$. On donnera le résultat sous forme algébrique puis sous forme exponentielle.
- 2) Montrer que :
 - a) $\forall z \in \mathbb{C}$, $\cos(-z) = \cos(z)$ et $\sin(-z) = -\sin(z)$.
 - b) $\forall a, b \in \mathbb{C}$, $\cos(a+b) = \cos(a)\cos(b) \sin(a)\sin(b)$.
 - c) $\forall z \in \mathbb{C}, \cos^2(z) + \sin^2(z) = 1.$
- 3) a) On pose z = x + iy où x et y sont des réels. Exprimer la partie réelle et la partie imaginaire de $\cos(z)$ en fonction de $\cos(x)$, $\sin(x)$, e^y et e^{-y} .
- b) En déduire l'ensemble des nombres complexes z tels que $\cos(z)$ est réel et représenter cet ensemble dans le plan complexe.

EXERCICE 2

L'objectif de l'exercice est de déterminer les droites tangentes à la fois à la courbe représentative de la fonction logarithme népérien et à celle de la fonction exponentielle.

On note respectivement \mathcal{C} et \mathcal{C}' les courbes d'équation $y = e^x$ et $y = \ln x$ dans un repère orthonormal du plan.

- 1) a) Soit $a \in \mathbb{R}$. Donner une équation de la tangente T_a à \mathcal{C} au point d'abscisse a.
 - b) Soit $b \in \mathbb{R}_+^*$. Donner une équation de la tangente T_b' à \mathcal{C}' au point d'abscisse b.
 - c) Montrer que les droites T_a et T_b' sont confondues si et seulement si $b = e^{-a}$ et $e^{-a} = \frac{a-1}{a+1}$.
- 2) On considère la fonction f définie pour tout réel x différent de -1 par $f(x) = \frac{x-1}{x+1}e^x$.
 - a) Étudier les variations de f sur $I = [0, +\infty[$ et la limite de f en $+\infty$.
 - b) Montrer que l'équation f(x) = 1 admet dans I une unique solution, que l'on notera α .
- c) Pour tout réel x différent de 1 et de -1, calculer le produit $f(x) \times f(-x)$. En déduire l'ensemble des solutions sur $\mathbb{R} \setminus \{-1\}$ de l'équation f(x) = 1.
- 3) a) Déduire des questions précédentes que les courbes \mathcal{C} et \mathcal{C}' ont deux tangentes communes.
- b) Déterminer les coordonnées des points d'intersection de ces tangentes avec les courbes \mathcal{C} et \mathcal{C}' et en déduire qu'elles sont symétriques par rapport à la droite d'équation y=x.
 - c) Tracer \mathcal{C} , \mathcal{C}' et leurs tangentes communes. On donne $\alpha \approx 1.5$, $e^{\alpha} \approx 4.7$ et $e^{-\alpha} \approx 0.2$.