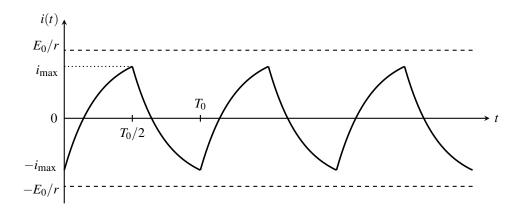

DM de physique n° 7

Exercice: Onduleur

Une tension continue E_0 peut être convertie en un signal alternatif de haute fréquence à l'aide d'un **onduleur**. La structure la plus simple est celle d'un onduleur de tension monophasé « pleine onde », représentée sur la figure cidessous. Les interrupteurs K_1 à K_4 sont commandés pour s'ouvrir et se fermer à intervalles réguliers et fonctionnent de manière périodique à la fréquence $f_0 = 1/T_0$.



1. Le tableau ci-dessous représente, sur une période T_0 , l'état des interrupteurs.

	K_1	K_2	<i>K</i> ₃	K_4	$u_1(t)$
$0 < t < T_0/2$	fermé	ouvert	ouvert	fermé	
$T_0/2 < t < T_0$	ouvert	fermé	fermé	ouvert	

Remplir la dernière colonne et donner l'expression de la tension $u_1(t)$ en fonction de E_0 sur chaque demipériode. Tracer l'allure de $u_1(t)$ sur l'intervalle $0 < t < 2T_0$.

2. Établir l'équation différentielle vérifiée par i(t) sur chaque demi-période. Identifier un temps caractéristique. On représente ci-dessous l'allure de i(t) sur quelques périodes. On indique également les intensités $\pm \frac{E_0}{r}$.

Dans les questions qui suivent on se place dans l'intervalle $0 < t < T_0/2$. D'après la figure ci-dessus l'intensité initiale est égale à $-i_{\text{max}}$.

3. Exprimer i(t) en fonction de i_{max} , E_0 , r et L.

4. Montrer que :
$$i_{\max} = \frac{1-\alpha}{1+\alpha} \frac{E_0}{r}$$
, avec $\alpha = \exp\left(-\frac{rT_0}{2L}\right)$.

5. On pose $f_0 = \beta \frac{r}{L}$. Estimer la valeur de β à partir du graphe.