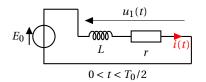
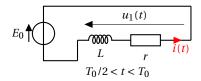
Corrigé DM7

Exercice: Onduleur

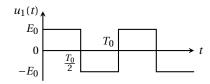
1. On représente le schéma équivalent du circuit sur chaque demi-période. On trouve u_1 en appliquant la loi des mailles. On constate que le basculement des interrupteurs revient à renverser le sens du générateur dans le circuit.





On trace l'allure de $u_1(t)$ sur la figure ci-dessous. Il s'agit d'une tension **rectangulaire** d'amplitude E_0 .

	$u_1(t)$
$0 < t < T_0/2$	E_0
$T_0/2 < t < T$	$-E_0$



2. On applique la loi d'additivité des tensions dans la branche r-L pour obtenir l'équation différentielle vérifiée par i(t) : $L\frac{\mathrm{d}i}{\mathrm{d}t}+ri=u_1(t)$ On en déduit son expression sur chaque demi-période :

$$\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{r}{L}i = \frac{E_0}{L} \quad (0 < t < T_0/2)$$

$$\boxed{ \frac{\mathrm{d}i}{\mathrm{d}t} + \frac{r}{L}i = \frac{E_0}{L} \quad (0 < t < T_0/2) } \qquad \text{et} \qquad \boxed{ \frac{\mathrm{d}i}{\mathrm{d}t} + \frac{r}{L}i = -\frac{E_0}{L} \quad (T_0/2 < t < T) }$$

Le temps caractéristique du circuit vaut $\tau = \frac{L}{r}$

- **3.** On détermine la solution de l'équation différentielle pour la demi-période $0 < t < T_0/2$.
- La solution générale de cette équation s'écrit sous la forme : $i(t) = A \exp\left(-\frac{rt}{L}\right) + i_p$.
- On calcule la solution particulière : $\frac{r}{l}i_p = \frac{E_0}{l} \iff i_p = \frac{E_0}{r}$.
- La condition initiale $i(0^+) = -i_{\text{max}}$ permet de trouver la constante d'intégration : $A = -i_{\text{max}} \frac{E_0}{r}$.

On conclut: $i(t) = \left(-i_{\text{max}} - \frac{E_0}{r}\right) \exp\left(-\frac{rt}{L}\right) + \frac{E_0}{r}$

5. D'après le graphe on a : $i\left(\frac{T_0}{2}\right) = i_{\text{max}} \iff \alpha\left(-i_{\text{max}} - \frac{E_0}{r}\right) + \frac{E_0}{r} = i_{\text{max}}$.

Après simplification on obtient l'expression de l'intensité maximale : $i_{\max} = \frac{1-\alpha}{1+\alpha} \frac{E_0}{r}$

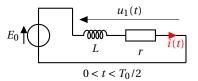
6. Méthode 1: On estime sur le graphe que $i_{\text{max}} \simeq \frac{3}{4} \times \frac{E_0}{r}$. On en déduit que $\frac{1-\alpha}{1+\alpha} = \frac{3}{4} \iff \alpha = \frac{1}{7}$. Enfin, puisque $f_0 = 1/T_0$, on $\alpha = \exp\left(-\frac{rT_0}{2L}\right) = \exp\left(-\frac{1}{2B}\right)$. Ainsi : $\beta = -\frac{1}{2\ln \alpha} = 0.25$

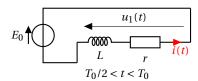
<u>Méthode 2</u>: L'intensité $\frac{E_0}{r}$ correspond à l'asymptote de i(t) dans l'intervalle $0 < t < T_0/2$. On trace la tangente à l'origine et l'intersection avec l'asymptote permet d'estimer le temps caractéristique $\tau = \frac{L}{\tau}$. On trouve $\tau \simeq \frac{T_0}{4} \iff \frac{L}{r} = \frac{1}{4f_0} \iff f_0 = \frac{r}{4L} \iff \beta = \frac{1}{4}$

Corrigé DM7

Exercice: Onduleur

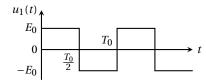
1. On représente le schéma équivalent du circuit sur chaque demi-période. On trouve u_1 en appliquant la loi des mailles. On constate que le basculement des interrupteurs revient à renverser le sens du générateur dans le circuit.





On trace l'allure de $u_1(t)$ sur la figure ci-dessous. Il s'agit d'une tension **rectangulaire** d'amplitude E_0 .

	$u_1(t)$
$0 < t < T_0/2$	E_0
$T_0/2 < t < T$	$-E_0$



2. On applique la loi d'additivité des tensions dans la branche r-L pour obtenir l'équation différentielle vérifiée par i(t) : $L\frac{\mathrm{d}i}{\mathrm{d}t}+ri=u_1(t)$ On en déduit son expression sur chaque demi-période :

$$\boxed{\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{r}{L}i = \frac{E_0}{L} \quad (0 < t < T_0/2)} \qquad \text{et} \qquad \boxed{\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{r}{L}i = -\frac{E_0}{L} \quad (T_0/2 < t < T)}$$

$$\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{r}{I}i = -\frac{E_0}{I} \quad ($$

Le temps caractéristique du circuit vaut $\tau = \frac{L}{r}$

- **3.** On détermine la solution de l'équation différentielle pour la demi-période $0 < t < T_0/2$.
- La solution générale de cette équation s'écrit sous la forme : $i(t) = A \exp\left(-\frac{rt}{L}\right) + i_p$.
- On calcule la solution particulière : $\frac{r}{l}i_p = \frac{E_0}{l} \iff i_p = \frac{E_0}{r}$.
- La condition initiale $i(0^+) = -i_{\text{max}}$ permet de trouver la constante d'intégration : $A = -i_{\text{max}} \frac{E_0}{r}$

On conclut: $i(t) = \left(-i_{\text{max}} - \frac{E_0}{r}\right) \exp\left(-\frac{rt}{L}\right) + \frac{E_0}{r}$

5. D'après le graphe on a : $i\left(\frac{T_0}{2}\right) = i_{\text{max}} \iff \alpha\left(-i_{\text{max}} - \frac{E_0}{r}\right) + \frac{E_0}{r} = i_{\text{max}}$.

Après simplification on obtient l'expression de l'intensité maximale : $\left|i_{\max} = \frac{1-\alpha}{1+\alpha} \frac{E_0}{r}\right|$

6. Méthode 1: On estime sur le graphe que $i_{\text{max}} \simeq \frac{3}{4} \times \frac{E_0}{r}$. On en déduit que $\frac{1-\alpha}{1+\alpha} = \frac{3}{4} \iff \alpha = \frac{1}{7}$. Enfin, puisque $f_0 = 1/T_0$, on $\alpha = \exp\left(-\frac{rT_0}{2L}\right) = \exp\left(-\frac{1}{2\beta}\right)$. Ainsi : $\beta = -\frac{1}{2\ln\alpha} = 0.25$

<u>Méthode 2</u>: L'intensité $\frac{E_0}{r}$ correspond à l'asymptote de i(t) dans l'intervalle $0 < t < T_0/2$. On trace la tangente à l'origine et l'intersection avec l'asymptote permet d'estimer le temps caractéristique $\tau = \frac{L}{r}$.

On trouve
$$\tau \simeq \frac{T_0}{4} \iff \frac{L}{r} = \frac{1}{4f_0} \iff f_0 = \frac{r}{4L} \iff \beta = \frac{1}{4}$$