SUIS-JE AU POINT?

Chapitre 7 : Cinématique

- Une information utile, mais pas à mémoriser par cœur.
- Une définition/formule à connaître PAR CŒUR.
- Un savoir-faire à acquérir.
- TD Un exercice du TD pour s'entraîner.

1 Repérage d'un point dans l'espace et le temps

1.1 Référentiel

Un référentiel est un **solide** de référence par rapport auquel on étudie un mouvement.

1.2 Vecteur position

lacktriangle Définir le vecteur position d'un point P.

1.3 Base orthonormée directe

- Définir un **vecteur unitaire** (vecteur sans dimension de norme égale à 1), une **base orthonormée** (famille de vecteurs unitaires orthogonaux les uns aux autres).
- Sur un exemple donné de base orthonormée, utiliser la règle des trois doigts **de la main droite** afin de déterminer si celle-ci est directe ou indirecte.

 OU ALORS étant donnés deux vecteurs de base, déterminer la direction et le sens du troisième pour que la base soit **orthonormée** et **directe**.

1.4 Coordonnées, projections

- La coordonnée d'un vecteur \vec{A} selon un vecteur de base se calcule à l'aide d'un **produit scalaire**. Par exemple : $A_x = \vec{A} \cdot \vec{u}_x$.
- $\mathcal{L}_{\mathbb{D}}$ Projeter un vecteur dans une base orthonormée à deux dimensions en fonction d'un angle θ .

1.5 Repère

- Un repère est un outil mathématique constitué :
 - ☐ d'une origine (point fixe du référentiel d'étude),
 - d'une base orthonormée directe.

Un repère permet:

- de définir la position d'un objet,
- de **projeter** tout vecteur, c'est-à-dire d'associer à chaque vecteur des **coordonnées**.

1.6 Vecteur vitesse

1.6.1 Vecteur déplacement élémentaire

Le vecteur déplacement élémentaire $d\vec{r}$ mesure le déplacement du point P sur sa trajectoire entre deux instants infiniment proches t et t+dt: $d\vec{r} = P(t)P(t+dt) = \vec{r}(t+dt) - \vec{r}(t)$

1.6.2 Vecteur vitesse instantanée

- lacktriangledown Définir le **vecteur vitesse instantanée** d'un point P en mouvement, dans un repère orthonormé $(\vec{v} = \frac{d\vec{r}}{dt})$.
- \mathbf{Q} La vitesse \vec{v} est toujours **tangente à la trajectoire**.
- Un mouvement est **uniforme** si la vitesse **en norme** $\|\vec{v}\|$ se conserve au cours du temps.
- Ω Un mouvement est **rectiligne et uniforme** si le **vecteur** \vec{v} se conserve au cours du temps.

1.7 Vecteur accélération

Définir le **vecteur accélération** d'un objet ponctuel P en mouvement, dans un repère orthonormé $\left(\vec{a} = \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = \frac{\mathrm{d}^2\vec{r}}{\mathrm{d}t^2}\right)$.

2 Systèmes de coordonnées

2.1 Coordonnées cartésiennes

- Représenter sur un schéma le repère cartésien. Indiquer les coordonnées et les vecteurs de base.
- Exprimer les vecteurs cinématiques : \vec{r} , \vec{v} , \vec{a} , $d\vec{r}$.

2.2 Coordonnées cylindro-polaires

- Représenter sur un schéma le repère cylindrique. Indiquer les coordonnées et les vecteurs de base.
- Exprimer la dérivée temporelle des vecteurs mobiles : $\left(\frac{\mathrm{d}\vec{u}_r}{\mathrm{d}t} = \dot{\theta}\vec{u}_{\theta}\right)$ et $\frac{\mathrm{d}\vec{u}_{\theta}}{\mathrm{d}t} = -\dot{\theta}\vec{u}_r$.
- Exprimer les vecteurs cinématiques : \vec{r} , \vec{v} , \vec{a} , $d\vec{r}$.

3 Applications

3.1 Mouvement uniformément accéléré

- Avant d'étudier un mouvement, il faut définir **clairement** le repère (et donc le système de coordonnées) utilisé, sans oublier de **placer son origine** et éventuellement de choisir **l'origine des temps**. Pour un mouvement uniformément accéléré, les coordonnées **cartésiennes** sont généralement les plus adaptées.
- Projeter un vecteur accélération dans une base cartésienne adaptée puis intégrer deux fois par rapport au temps pour déterminer la trajectoire du solide (position en fonction du temps).

3.2 Mouvement circulaire

- Pour un mouvement circulaire, les coordonnées **polaires** sont les plus adaptées.
- Exprimer dans la base polaire le vecteur vitesse et le vecteur accélération, dans le cas d'un mouvement circulaire et uniforme. Justifier que l'accélération est centripète. Montrer que l'accélération s'écrit : $\vec{a} = -\frac{\|\vec{v}\|^2}{R}\vec{u}_r$, avec R le rayon de la trajectoire.
- Exprimer dans la base polaire le vecteur vitesse et le vecteur accélération, dans le cas d'un mouvement circulaire non uniforme. Montrer que l'accélération s'écrit : $\vec{a} = -\frac{\|\vec{v}\|^2}{R}\vec{u}_r + \frac{d\|\vec{v}\|}{dt}\vec{u}_\theta$, avec R le rayon de la trajectoire.

4 Mouvement plan quelconque : repère de Frenet

- La trajectoire plane d'un mobile étant donnée, représenter en un point de cette trajectoire les vecteurs de la base de Frenet (\vec{u}_n, \vec{u}_t) , le cercle osculateur, le centre de courbure, le rayon de courbure.
- Exprimer le vecteur vitesse et le vecteur accélération dans la base de Frenet en fonction de $\|\vec{v}\|$ et du rayon de courbure R (pas de démo).
- Sur un schéma, représenter qualitativement la direction des vecteurs \vec{v} et \vec{a} en un point d'une trajectoire, en utilisant la base de Frenet (pour un mouvement uniforme, accéléré ou décéléré).