ENSEMBLES - APPLICATIONS

I Notions sur les ensembles

1 Notation

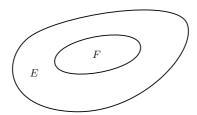
On peut définir un ensemble **en extension**, c'est-à-dire en donnant explicitement ses éléments, ou **en compréhension**, c'est-à-dire en donnant une propriété caractéristique des éléments de cet ensemble. Dans les deux cas on utilise des accolades.

Exemples:

- $-\{1,2,3\}$ désigne l'ensemble dont les éléments sont 1, 2 et 3. On peut aussi l'écrire par exemple $\{n \in \mathbb{N} \mid 0 < n < 4\}$ (ou $\{n \in \mathbb{N}, 0 < n < 4\}$ ou $\{n \in \mathbb{N}, 0 < n < 4\}$).
 - L'ensemble des entiers naturels pairs peut être noté $\{0,2,4,\ldots\}$ ou $\{2p \mid p \in \mathbb{N}\}$ ou $\{n \in \mathbb{N} \mid \exists p \in \mathbb{N}, n=2p\}$.
- $-\{n \in \mathbb{N} \mid n^2 \le 10\}$ est l'ensemble des entiers naturels dont le carré est inférieur ou égal à 10 (c'est-à-dire l'ensemble $\{0,1,2,3\}$).

2 Sous-ensemble

Définition 1 Soit E un ensemble. Un ensemble F est une partie de E ou un sous-ensemble de E si tous les éléments de F appartiennent à E. On dit alors que F est inclus dans E et on note $F \subset E$.



Remarque : L'ensemble vide \emptyset est donc toujours une partie de E.

Exemple: Pour les ensembles de nombres, on a les inclusions : $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$.

Définition 2 Soit E un ensemble. On note $\mathcal{P}(E)$ l'ensemble des parties de E.

Par exemple, si $E = \{a, b, c\}$, alors $\mathcal{P}(E) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, E\}$.

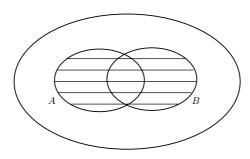
3 Réunion de sous-ensembles

Définition 3 Soient E un ensemble et A et B deux sous-ensembles de E. La **réunion** (ou **union**) de A et de B est le sous-ensemble de E formé des éléments qui appartiennent à A ou à B. On le note $A \cup B$.

Autrement dit:

$$x \in A \cup B \Leftrightarrow (x \in A \text{ ou } x \in B),$$

le « ou » étant ici inclusif (c'est-à-dire que x peut appartenir à A, à B ou aux deux).



1

Proposition 1 Soient A, B et C trois sous-ensembles de E. Alors :

- (i) $A \cup B = B \cup A$ (\cup est commutative).
- (ii) $(A \cup B) \cup C = A \cup (B \cup C)$ (\cup est associative).
- (iii) $A \cup \emptyset = \emptyset \cup A = A$ (\emptyset est élément neutre pour \cup).

Plus généralement :

Définition 4 Soit E un ensemble et soit $(A_i)_{i\in I}$ une famille de sous-ensembles de E. La **réunion des** A_i est le sous-ensemble de E formé des éléments qui appartiennent à l'un au moins des A_i . On le note $\bigcup A_i$.

Autrement dit:

$$x \in \bigcup_{i \in I} A_i \Leftrightarrow (\exists i \in I, x \in A_i).$$

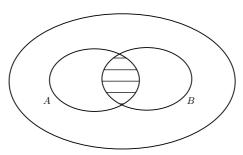
Exemple : Soit $E = \mathbb{R}$ et soit, pour tout $n \in \mathbb{N}$, $A_n = [n, n+1]$ (i.e. $A_0 = [0, 1]$, $A_1 = [1, 2]$, etc...). Alors $\bigcup_{n \in \mathbb{N}} A_n = \mathbb{R}^+$.

4 Intersection de sous-ensembles

Définition 5 Soient E un ensemble et A et B deux sous-ensembles de E. L'intersection de A et de B est le sous-ensemble de E dont les éléments appartiennent à A et à B. On le note $A \cap B$.

Autrement dit:

$$x \in A \cap B \Leftrightarrow (x \in A \text{ et } x \in B).$$



Proposition 2 Soient A, B et C trois sous-ensembles de E. Alors:

- (i) $A \cap B = B \cap A$ (\cap est commutative).
- (ii) $(A \cap B) \cap C = A \cap (B \cap C)$ (\cap est associative).
- (iii) $A \cap E = E \cap A = A$ (E est élément neutre pour \cap).

Remarque: Si $A \cap B = \emptyset$ on dit que A et B sont disjoints.

Définition 6 Soit E un ensemble et soit $(A_i)_{i \in I}$ une famille de sous-ensembles de E. L'intersection des A_i est le sous-ensemble de E formé des éléments qui appartiennent à tous les A_i . On le note $\bigcap_{i \in I} A_i$.

Autrement dit:

$$x \in \bigcap_{i \in I} A_i \Leftrightarrow (\forall i \in I, x \in A_i).$$

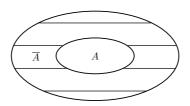
Exemple : Soit $E = \mathbb{R}$ et soit, pour tout $n \in \mathbb{N}^*$, $A_n = [0, \frac{1}{n}]$ (i.e. $A_1 = [0, 1]$, $A_2 = [0, \frac{1}{2}]$, etc...). Alors $\bigcap_{n \in \mathbb{N}^*} A_n = \{0\}$.

5 Complémentaire d'un sous-ensemble

Définition 7 Soit E un ensemble et soit A un sous-ensemble de E. Le **complémentaire de** A **dans** E est le sous-ensemble de E formé des éléments qui n'appartiennent pas à A. On le note \overline{A} ou A^c ou $E \setminus A$ ou $C_E A$.

Autrement dit:

$$x \in \overline{A} \Leftrightarrow x \notin A$$
.



Remarque: $\overline{\emptyset} = E$ et $\overline{E} = \emptyset$.

6 Différence de deux sous-ensembles

Définition 8 Soient E un ensemble et A et B deux sous-ensembles de E. La différence de A et de B est le sous-ensemble de E formé des éléments qui appartiennent à A mais pas à B. On le note $A \setminus B$.

Autrement dit:

$$x \in A \setminus B \Leftrightarrow (x \in A \text{ et } x \notin B).$$



Remarque : On a donc $A \setminus B = A \cap \overline{B}$.

7 Propriétés

• EGALITÉ DE DEUX SOUS-ENSEMBLES

Soient E un ensemble et A et B deux sous-ensembles de E. Alors :

$$A = B \Leftrightarrow (A \subset B \text{ et } B \subset A).$$

Pour montrer que A=B on peut donc procéder par **double inclusion** : on montre que $A\subset B$, puis que $B\subset A$. On peut aussi essayer d'établir l'équivalence $(x\in A\Leftrightarrow x\in B)$.

• Distributivité de ∪ par rapport à ∩

Proposition 3 Soient E un ensemble et A, B et C des sous-ensembles de E. Alors:

(i)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
.

(ii)
$$(B \cap C) \cup A = (B \cup A) \cap (C \cup A)$$
.

Démonstration :

Démontrons le (i) par double inclusion.

Montrons d'abord que $A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)$. Soit donc $x \in A \cup (B \cap C)$. Alors $x \in A$ ou $(x \in B \text{ et } x \in C)$. Si $x \in A$, alors $x \in A \cup B$ et $x \in A \cup C$. Sinon $x \in A \cup C$. Sin $x \in A$.

 $\text{Conclusion: on a montr\'e que } A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C) \text{ et que } (A \cup B) \cap (A \cup C) \subset A \cup (B \cap C), \text{ donc } A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$

Le (ii) se déduit du (i) et de la commutativité de \cup . \square

• DISTRIBUTIVITÉ DE ∩ PAR RAPPORT À ∪

 $\textbf{Proposition 4} \ \textit{Soient E un ensemble et A, B et C des sous-ensembles de E. Alors:}$

$$(i) A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

$$(ii) (B \cup C) \cap A = (B \cap A) \cup (C \cap A).$$

Exercice 1 Démontrer cette proposition.

• Règles de De Morgan

Proposition 5 Soient E un ensemble et A et B deux sous-ensembles de E. Alors :

- (i) $\overline{A \cup B} = \overline{A} \cap \overline{B}$.
- (ii) $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Démonstration :

$$\text{(i) } x \in \overline{A \cup B} \Leftrightarrow x \not \in A \cup B \Leftrightarrow \left\{ \begin{array}{c} x \not \in A \\ x \not \in B \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} x \in \overline{A} \\ x \in \overline{B} \end{array} \right. \Leftrightarrow x \in \overline{A} \cap \overline{B}.$$

(ii)
$$x \in \overline{A \cap B} \Leftrightarrow x \not\in A \cap B \Leftrightarrow (x \not\in A \text{ ou } x \not\in B) \Leftrightarrow (x \in \overline{A} \text{ ou } x \in \overline{B}) \Leftrightarrow x \in \overline{A} \cup \overline{B}$$
. \square

8 Partition d'un ensemble

Définition 9 Soit E un ensemble. Une **partition** de E est un ensemble de parties de E non vides, deux à deux disjointes et dont la réunion est égale à E.

Par exemple $\{\{1,4\},\{2,3,5\},\{6\}\}$ est une partition de l'ensemble $\{1,2,3,4,5,6\}$.

Remarque : Si on ne demande pas aux parties d'être non vides, on obtient seulement un recouvrement disjoint de E.

Exercice 2 Déterminer les partitions de l'ensemble $\{1, 2, 3\}$.

9 Fonction indicatrice d'une partie

Définition 10 Soit E un ensemble et soit A un sous-ensemble de E. La fonction indicatrice (ou fonction caractéristique) de A est l'application $\mathbb{1}_A: E \to \{0,1\}$ définie par

$$\mathbb{1}_A(x) = \left\{ \begin{array}{ll} 1 & si \ x \in A \\ 0 & si \ x \notin A \end{array} \right.$$

On peut aussi la noter χ_A .

Proposition 6 Soient E un ensemble et A, B deux parties de E. Alors :

(i)
$$\mathbb{1}_A^2 = \mathbb{1}_A$$
.

(iv)
$$\mathbb{1}_{A \cap B} = \min(\mathbb{1}_A, \mathbb{1}_B) = \mathbb{1}_A \times \mathbb{1}_B$$
.

(ii)
$$A \subset B \Leftrightarrow \mathbb{1}_A \leqslant \mathbb{1}_B$$
.

(v)
$$\mathbb{1}_{A \cup B} = \max(\mathbb{1}_A, \mathbb{1}_B) = \mathbb{1}_A + \mathbb{1}_B - \mathbb{1}_A \times \mathbb{1}_B$$
.

(iii)
$$A = B \Leftrightarrow \mathbb{1}_A = \mathbb{1}_B$$
.

(vi)
$$\mathbb{1}_{\overline{A}} = 1 - \mathbb{1}_A$$
.

${\bf D\'{e}monstration}:$

- (i) Immédiat.
- (ii) (\Rightarrow) Supposons que $A \subset B$. Soit $x \in E$. Si $x \in A$, alors $x \in B$, donc $\mathbb{1}_A(x) = \mathbb{1}_B(x) = 1$. Si $x \notin A$, alors $\mathbb{1}_A(x) = 0$. Dans les deux cas on a $\mathbb{1}_A(x) \leq \mathbb{1}_B(x)$.
- (\Leftarrow) Supposons que $\mathbb{1}_A \leqslant \mathbb{1}_B$. Alors, pour tout $x \in A$, on a $\mathbb{1}_A(x) = 1 \leqslant \mathbb{1}_B(x)$, donc $\mathbb{1}_B(x) = 1$ et $x \in B$.
- (iii) $A = B \Leftrightarrow (A \subset B \text{ et } B \subset A) \Leftrightarrow (\mathbb{1}_A \leqslant \mathbb{1}_B \text{ et } \mathbb{1}_B \leqslant \mathbb{1}_A) \Leftrightarrow \mathbb{1}_A = \mathbb{1}_B.$
- (iv) Si $x \in A \cap B$, alors $\mathbbm{1}_A(x) = \mathbbm{1}_B(x) = 1$, donc $\min(\mathbbm{1}_A, \mathbbm{1}_B)(x) = (\mathbbm{1}_A \times \mathbbm{1}_B)(x) = 1$. Si $x \notin A \cap B$, alors $\mathbbm{1}_A(x) = 0$ ou $\mathbbm{1}_B(x) = 0$, donc $\min(\mathbbm{1}_A, \mathbbm{1}_B)(x) = (\mathbbm{1}_A \times \mathbbm1}_B)(x) = (\mathbbm{1}_A \times \mathbbm{1}_B)(x) = (\mathbbm{1}_A \times \mathbbm1}_B)(x) = (\mathbbm\mathbb{1}_A \times \mathbbm1}_B)(x) = (\mathbbm{1}_A \times \mathbbm1}_B)(x) = (\mathbbm1}_A \times \mathbbm1}_B)(x) = (\mathbbm1}$
- (v) Analogue en distinguant les cas $x \in A \cap B$, $x \in A \setminus B$, $x \in B \setminus A$, $x \in \overline{A \cup B}$.
- (vi) Si $x \in A$, $\mathbbm{1}_{\overline{A}}(x) = 0$ et $1 \mathbbm{1}_A(x) = 0$, et si $x \not\in A$, $\mathbbm{1}_{\overline{A}}(x) = 1$ et $1 \mathbbm{1}_A(x) = 1$. \square

En utilisant les fonctions indicatrices, on peut démontrer assez simplement de nombreuses propriétés ensemblistes.

Exercice 3 Redémontrer la distributivité de \cap par rapport à \cup et celle de \cup par rapport à \cap en utilisant les fonctions indicatrices.

10 Produit cartésien

Définition 11 Soient E et F deux ensembles. Le **produit cartésien de** E et de F est l'ensemble des couples (x,y) où x est un élément de E et y est un élément de F. On le note $E \times F$.

Autrement dit:

$$E \times F = \{(x, y) | x \in E, y \in F\}.$$

Exemple: Si $E = \{a, b, c\}$ et $F = \{0, 1\}$, alors $E \times F = \{(a, 0), (a, 1), (b, 0), (b, 1), (c, 0), (c, 1)\}$.

Remarques:

1) $E \times F$ se lit $\ll E$ croix $F \gg$.

2) Le produit cartésien $E \times E$ est noté E^2 . C'est l'ensemble des couples d'élements de E:

$$E^2 = \{(x, y) \mid x, y \in E\}.$$

Définition 12 Soient E_1, E_2, \ldots, E_n des ensembles. Le **produit cartésien de** E_1, E_2, \ldots, E_n est l'ensemble des éléments de la forme (x_1, x_2, \ldots, x_n) où, pour tout $i \in \{1, \ldots, n\}$, x_i est un élément de E_i . On le note $E_1 \times E_2 \times \ldots \times E_n$ ou $\prod_{i=1}^n E_i$.

Un élément de la forme (x_1, x_2, \dots, x_n) est appelé n-uplet.

Remarque : Le produit cartésien $E \times E \times ... \times E$ est noté E^n :

$$E^{n} = \{(x_{1}, x_{2}, \dots, x_{n}) \mid \forall i \in \{1, \dots, n\}, x_{i} \in E\}.$$

II Notions sur les applications

1 Définition

Définition 13 Soient E et F deux ensembles. Une application f de E dans F est la donnée d'une partie G de $E \times F$ telle que, pour tout x de E, il existe un unique y dans F tel que le couple (x,y) appartienne à G. Ce y est alors appelé image de x par f et noté f(x), et x est un antécédent de y par f.

En clair, cela signifie qu'une application associe à chaque élément de E un et un seul élément de F.

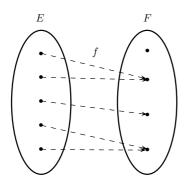
Pour désigner une application de E dans F on utilise la notation $f: E \to F$. E est l'ensemble de départ (ou ensemble de définition) de f, F est son ensemble d'arrivée.

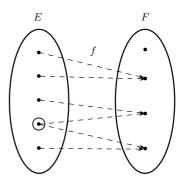
L'ensemble $G = \{(x, f(x)) \mid x \in E\}$ est appelé le **graphe de** f.

On note $\mathcal{F}(E,F)$ ou F^E l'ensemble des applications de E dans F.

Remarque : Égalité de deux applications :

$$f = g \Leftrightarrow \forall x \in E, f(x) = g(x).$$





La figure de gauche représente une application f entre les ensembles E et F, mais pas la figure de droite car l'un des éléments de E a deux images.

Exemples:

- $-f:\mathbb{R}\to\mathbb{R}$ définie par $f(x)=x^2$ est une application de \mathbb{R} dans \mathbb{R} : à chaque réel x elle associe le réel x^2 .
- $-f: \mathbb{N} \to \mathbb{N}$ définie par f(n) = n! est une application de \mathbb{N} dans \mathbb{N} : à chaque entier naturel n elle associe l'entier naturel n!.
- On a vu au chapitre 2 des exemples d'applications du plan dans lui-même : les translations, les rotations, les réflexions, les homothéties, qui, à un point du plan, associent un autre point du plan.
- Soit E l'ensemble des fonctions continues sur [0,1]. Soit $\varphi: E \to \mathbb{R}$ définie par $\varphi(f) = \int_0^1 f(x)dx$. C'est une application de E dans \mathbb{R} : à une fonction elle associe un réel.

- Si $f: E \to F$ est une application et A un sous-ensemble de E, on appelle **restriction de** f à A l'application $f_{|A|}: A \to F$ définie par $f_{|A|}(x) = f(x)$.
- Soient E et I deux ensembles. Une famille d'éléments de E indexée par I est une application de I dans E. Une telle famille $x:I\to E$ est notée $(x_i)_{i\in I}$ où $x_i=x(i)$. En particulier, une famille d'éléments de E indexée par $\mathbb N$ est appelée suite d'éléments de E.

2 Image directe, image réciproque

Définition 14 Soit $f: E \to F$ une application. Soit A un sous-ensemble de E. L'image directe de A par f est le sous-ensemble de F formé des images par f des éléments de A. On le note f(A).

Autrement dit:

$$f(A) = \{ f(x) \mid x \in A \}$$

Exemple: Soit $f : \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2$. Alors f([1,2]) = [1,4], f([-1,3]) = [0,9], etc.

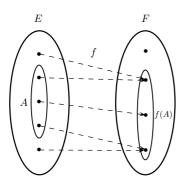
Définition 15 Soit $f: E \to F$ une application. Soit B un sous-ensemble de F. L'image réciproque de B par f est le sous-ensemble de E formé des antécédents par f des éléments de B. On le note $f^{-1}(B)$.

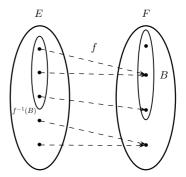
Autrement dit:

$$f^{-1}(B) = \{x \in E \mid f(x) \in B\}$$

Exemple: Soit $f : \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2$. Alors $f^{-1}([0,4]) = [-2,2]$, $f^{-1}([1,+\infty[)=]-\infty,-1] \cup [1,+\infty[$, etc.

Remarque : Ne pas confondre cette notation avec celle de la fonction réciproque d'une bijection : $f^{-1}(B)$ a un sens même si f n'est pas bijective (mais si f est bijective l'image directe de B par f^{-1} coïncide avec l'image réciproque de B par f).





Exercice 4

- 1) Soit $f: \mathbb{R} \to \mathbb{R}$. Déterminer $f(\mathbb{R}), f^{-1}(\{5\})$ et $f^{-1}(\mathbb{N})$. $x \mapsto |x|$
- 2) Soit $f: \mathbb{R} \to \mathbb{Z}$. Déterminer $f([0,5]), f^{-1}(\{0\})$ et $f^{-1}(\mathbb{N})$. $x \mapsto |x|$
- 3) Soit $f: \mathbb{N}^2 \to \mathbb{N}$. Déterminer $f(\{0,1,2\}^2), f^{-1}(\{25\})$ et $f^{-1}(\{0,\dots,10\})$. $(p,q) \mapsto p^2+q^2$

3 Composée de deux applications

Définition 16 Soient E, F, G trois ensembles et $f: E \to F, g: F \to G$ deux applications. La composée de f et de g est l'application de E dans G notée $g \circ f$ et définie par :

$$(g \circ f)(x) = g(f(x)).$$

Exemple : Soient f et g définies sur \mathbb{R} par $f(x) = x^2 + x + 1$ et g(x) = 2x + 1.

Alors
$$(g \circ f)(x) = 2(x^2 + x + 1) + 1 = 2x^2 + 2x + 3$$
 et $(f \circ g)(x) = f(g(x)) = (2x + 1)^2 + (2x + 1) + 1 = 4x^2 + 6x + 3$.

La composition n'est donc pas commutative. En revanche elle est associative :

Proposition 7 Soient $f: E \to F$, $g: F \to G$ et $h: G \to H$ des applications. Alors $(h \circ g) \circ f = h \circ (g \circ f)$.

Démonstration :

Soit $x \in E$. Alors $((h \circ g) \circ f)(x) = (h \circ g)(f(x)) = h(g(f(x)))$ et $(h \circ (g \circ f))(x) = h((g \circ f)(x)) = h(g(f(x)))$. Les applications $(h \circ g) \circ f$ et $h \circ (g \circ f)$ sont donc égales. \square

4 Application identité

Définition 17 Soit E un ensemble. L'application identique ou identité de E est l'application de E dans E notée Id_E définie par :

$$\mathrm{Id}_E(x) = x.$$

S'il n'y a pas d'ambiguïté sur E, on la note simplement Id.

Proposition 8 Soient E et F deux ensembles et soit $f: E \to F$ une application. Alors $f \circ Id_E = f$ et $Id_F \circ f = f$.

Démonstration : Immédiat. \square

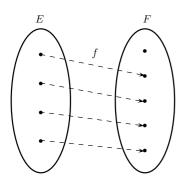
5 Applications injectives, surjectives, bijectives

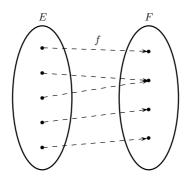
• Injectivité, surjectivité, bijectivité

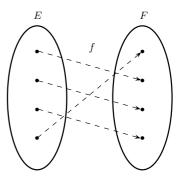
Définition 18 Soient E et F deux ensembles et soit $f: E \to F$ une application.

- (i) On dit que f est injective si tout élément de F a au plus un antécédent par f.
- (ii) On dit que f est surjective si tout élément de F a au moins un antécédent par f.
- (iii) On dit que f est bijective si tout élément de F a exactement un antécédent par f.

« Au plus un » signifie zéro ou un.







La première figure représente une application injective mais non surjective. La deuxième représente une application surjective mais non injective. La troisième représente une application bijective.

Remarques:

- 1) Avec des quantificateurs :
- (i) f est injective si et seulement si : $\forall (x,y) \in E^2$, $(x \neq y \Rightarrow f(x) \neq f(y))$, ou encore, par contraposée, si et seulement si : $\forall (x,y) \in E^2$, $(f(x) = f(y) \Rightarrow x = y)$.
 - (ii) f est surjective si et seulement si : $\forall y \in F, \exists x \in E, y = f(x)$.
 - (iii) f est bijective si et seulement si : $\forall y \in F, \exists ! x \in E, y = f(x)$.
- 2) En pratique, pour montrer que $f: E \to F$ est injective, on suppose qu'il existe $x, y \in E$ tels que f(x) = f(y), et on montre qu'alors x = y.
- 3) f est surjective si et seulement si f(E) = F.
- 4) f est bijective si et seulement si elle est injective et surjective.

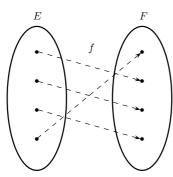
Exercice 5 Les applications suivantes sont-elles injectives, surjectives, bijectives?

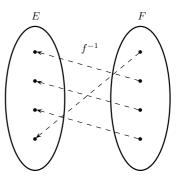
- 1) $f: \mathbb{C} \to \mathbb{R}$ définie par f(z) = |z|.
- 2) $f: \mathbb{N} \to \mathbb{N}$ définie par f(n) = n+1 et $g: \mathbb{Z} \to \mathbb{Z}$ définie par g(n) = n+1.
- 3) $f: \mathbb{N} \to \mathbb{N}$ définie par $f(n) = n^2$, $g: \mathbb{Z} \to \mathbb{Z}$ définie par $g(n) = n^2$, $h: \mathbb{R} \to \mathbb{R}$ définie par $h(x) = x^2$, $k: \mathbb{C} \to \mathbb{C}$ définie par $h(x) = x^2$.
- 4) $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par f(x,y) = (x+y,x-y) et $g: \mathbb{R}^2 \to \mathbb{R}^2$ définie par g(x,y) = (x+y,xy).
- 5) La projection orthogonale sur un plan P de l'espace, la réflexion par rapport à P.
- APPLICATION RÉCIPROQUE D'UNE BIJECTION

Définition 19 Soit f une bijection de E dans F. Pour tout $y \in F$ on note $f^{-1}(y)$ l'unique antécédent de y par f. On définit ainsi une application $f^{-1}: F \to E$ appelée application réciproque de f.

Pour tout $x \in I$ et pour tout $y \in J$, on a donc :

$$x = f^{-1}(y) \Leftrightarrow y = f(x).$$





Proposition 9 Une application $f: E \to F$ est bijective si et seulement s'il existe une application $g: F \to E$ telle que $\begin{cases} f \circ g = \operatorname{Id}_F \\ g \circ f = \operatorname{Id}_E \end{cases}$. De plus, si g existe, alors $g = f^{-1}$.

Démonstration :

(⇒) Supposons f bijective. On va montrer que $f \circ f^{-1} = \mathrm{Id}_F$ et que $f^{-1} \circ f = \mathrm{Id}_E$.

Soit $y \in F$. Alors $f^{-1}(y)$ est un antécédent de y par f, donc $f(f^{-1}(y)) = y$. On a donc $f \circ f^{-1} = \mathrm{Id}_F$.

Soit $x \in E$. Par définition, $f^{-1}(f(x))$ est l'unique antécédent de f(x) par f: c'est x. On a donc $f^{-1} \circ f = \mathrm{Id}_E$.

 $(\Leftarrow) \text{ Supposons qu'il existe une application } g: F \to E \text{ telle que } \left\{ \begin{array}{l} f \circ g = \operatorname{Id}_F \\ g \circ f = \operatorname{Id}_E \end{array} \right. \text{ On va montrer que } f \text{ est injective et surjective.}$

Montrons que f est injective. Soient $x_1, x_2 \in E$ tels que $f(x_1) = f(x_2)$. Alors $g(f(x_1)) = g(f(x_2))$. Or $g \circ f = \mathrm{Id}_E$, donc $x_1 = x_2$. Montrons maintenant que f est surjective. Soit $g \in F$. Posons $g(g(x_1)) = g(g(y)) = g(g($

De plus, si $y \in F$, on a vu que g(y) est un antécédent de y par f, donc en fait $g(y) = f^{-1}(y)$: l'application g n'est autre que f^{-1} . \square

Exercice 6 Soient les applications $f: \mathbb{R} \to]-1,1[$ et $g:]-1,1[\to \mathbb{R}$ définies par $f(x)=\frac{e^x-1}{e^x+1}$ et $g(x)=\ln\frac{1+x}{1-x}$. Déterminer $f\circ g$ et $g\circ f$. Que peut-on en déduire?

• Composée de deux injections, de deux surjections, de deux bijections

Proposition 10 Soient $f: E \to F$ et $g: F \to G$ deux applications.

- (i) Si f et g sont injectives, alors $g \circ f$ aussi.
- (ii) Si f et q sont surjectives, alors $q \circ f$ aussi.
- (iii) Si f et g sont bijectives, alors $g \circ f$ aussi, et sa réciproque est $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Démonstration :

- (i) Supposons f et g injectives. Soient $x_1, x_2 \in E$ tels que $g \circ f(x_1) = g \circ f(x_2)$. Alors $g(f(x_1)) = g(f(x_2))$. Or g est injective, donc $f(x_1) = f(x_2)$. Mais f est également injective donc $x_1 = x_2$. Ainsi $g \circ f$ est bien injective.
- (ii) Supposons f et g surjectives. Soit $z \in G$. Puisque g est surjective, il existe $y \in F$ tel que z = g(y). De même, puisque f est surjective, il existe $x \in E$ tel que y = f(x). On a donc $z = g(f(x)) = g \circ f(x)$: $g \circ f$ est bien surjective.
- (iii) On a $(g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ (f \circ f^{-1}) \circ g^{-1} = g \circ \operatorname{Id}_F \circ g^{-1} = g \circ g^{-1} = \operatorname{Id}_G$ et $(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ \operatorname{Id}_F \circ f = f^{-1} \circ f = \operatorname{Id}_E$, donc, par la proposition précédente, $g \circ f$ est bijective et sa réciproque est $f^{-1} \circ g^{-1}$. \square