
Correction du DNS 9

EXERCICE 1

1) On factorise le dénominateur : x2 + 3x+ 2 = (x+ 1)(x+ 2), puis on décompose en éléments simples : on sait qu’il
existe des réels a et b tels que

(∗) 1

(x+ 1)(x+ 2)
=

a

x+ 1
+

b

x+ 2
.

En multipliant les deux membres de l’égalité (∗) par x+ 1 et en prenant x = −1, on obtient a = 1.

En multipliant les deux membres de l’égalité (∗) par x+ 2 et en prenant x = −2, on obtient b = −1.

Ainsi
∫ 1

0

dx

(x+ 1)(x+ 2)
=

∫ 1

0

dx

x+ 1
−

∫ 1

0

dx

x+ 2
= [ln(x+ 1)]10 − [ln(x+ 2)]10 = 2 ln 2− ln 3.

2) On factorise le numérateur :

∫ 1

0

dx

x2 + 6x+ 9
=

∫ 1

0

dx

(x+ 3)2
=

[

− 1

x+ 3

]1

0

= −1

4
+

1

3
=

1

12
.

3) On intègre par parties puis on décompose en éléments simples :

∫ 2

1

lnx

(1 + x)2
dx =

[

− lnx

1 + x

]2

1

+

∫ 2

1

1

x(1 + x)
dx

= − ln 2

3
+

∫ 2

1

(

1

x
− 1

1 + x

)

dx

= − ln 2

3
+ [lnx− ln(1 + x)]21

=
5 ln 2

3
− ln 3.

EXERCICE 2

1) On a

I0 =

∫ 1

0

√
1− x dx =

∫ 1

0

(1− x)1/2 dx =

[

− (1− x)3/2

3/2

]1

0

=
2

3
.

2) Soit n ∈ N. Posons u(x) = xn et v(x) = −2

3
(1 − x)3/2 pour tout x ∈ [0, 1]. Les fonctions u et v sont de classe C1,

u′(x) = nxn−1 et v′(x) =
√
1− x pour tout x ∈ [0, 1]. La formule d’intégration par parties donne :

In =

[

−2

3
(1− x)3/2xn

]1

0

+
2n

3

∫ 1

0

xn−1(1− x)3/2 dx

=
2n

3

∫ 1

0

xn−1(1− x)
√
1− x dx

=
2n

3

∫ 1

0

xn−1
√
1− x dx− 2n

3

∫ 1

0

xn
√
1− x dx

=
2n

3
In−1 −

2n

3
In.

On en déduit que
2n+ 3

3
In =

2n

3
In−1

et donc que

In =
2n

2n+ 3
In−1.

3) On raisonne par récurrence.

On a vu que I0 =
2

3
et pour n = 0 on a

22n+3n!(n+ 2)!

(2n+ 4)!
=

16

24
=

2

3
également.

Soit n ∈ N. Supposons que In =
22n+3n!(n+ 2)!

(2n+ 4)!
et montrons que In+1 =

22n+5(n+ 1)!(n+ 3)!

(2n+ 6)!
.



D’après la question précédente :

In+1 =
2n+ 2

2n+ 5
In

=
2(n+ 1)

2n+ 5

22n+3n!(n+ 2)!

(2n+ 4)!

=
22n+4(n+ 1)!(n+ 2)!

(2n+ 5)!

=
22n+4(n+ 1)!(n+ 2)!2(n+ 3)

(2n+ 5)!(2n+ 6)

=
22n+5(n+ 1)!(n+ 3)!

(2n+ 6)!
.

Le théorème de récurrence permet de conclure.

EXERCICE 3

1) La solution générale de l’équation homogène xy′ − y = 0 est définie par

∀x ∈ ]0,+∞[, y(x) = λx

où λ ∈ R.

Pour trouver une solution particulière de l’équation avec second membre on utilise la méthode de variation de la
constante (en posant ψ(x) = x et y = zψ) qui mène à

z′(x) =
lnx

x2
.

On trouve une primitive en intégrant par parties :
∫

lnx

x2
dx = − lnx

x
+

∫

1

x2
dx = − lnx

x
− 1

x
.

La fonction y définie par y(x) = − lnx− 1 est donc une solution particulière de l’équation.

Les solutions de l’équation sont donc les fonctions définies par

∀x ∈ ]0,+∞[, y(x) = − lnx− 1 + λx

où λ ∈ R.

2) La solution générale de l’équation homogène
√
1− x2 y′ + y = 0 est définie par

∀x ∈ ]− 1, 1[, y(x) = λe−Arcsin x

où λ ∈ R.

On voit que la fonction constante x 7→ 1 est une solution de l’équation avec second membre.

Les solutions de l’équation sont donc les fonctions définies par

∀x ∈ ]− 1, 1[, y(x) = 1 + λe−Arcsin x

où λ ∈ R.

3) La solution générale de l’équation homogène 2x(1 + x)y′ + (1 + x)y = 0 est définie par

∀x ∈ ]0,+∞[, y(x) =
λ√
x

où λ ∈ R.

Pour trouver une solution particulière de l’équation avec second membre on utilise la méthode de variation de la
constante (en posant ψ(x) = 1√

x
et y = zψ) qui mène à

z′(x) =

√
x

2x(1 + x)
=

1

2
√
x(1 + x)

.

On trouve une primitive en effectuant le changement de variable t =
√
x (donc x = t2 et dx = 2t dt) :

∫

dx

2
√
x(1 + x)

=

∫

2t

2t(1 + t2)
dt =

∫

dt

1 + t2
= Arctan t = Arctan

√
x.



La fonction y définie par y(x) =
Arctan

√
x√

x
est donc une solution particulière de l’équation.

Les solutions de l’équation sont donc les fonctions définies par

∀x ∈ ]0,+∞[, y(x) =
Arctan

√
x√

x
+

λ√
x

où λ ∈ R.


