Correction du DNS 9

EXERCICE 1

1) On factorise le dénominateur : 2% + 3z + 2 = (z + 1)(z + 2), puis on décompose en éléments simples : on sait qu’il
existe des réels a et b tels que

(%) 1 a n b
* = .

(z+D(xz+2) =xz+1 =x+2
En multipliant les deux membres de ’égalité (%) par « + 1 et en prenant £ = —1, on obtient a = 1.
En multipliant les deux membres de I’égalité (x) par x + 2 et en prenant x = —2, on obtient b = —1.
Ainsi

1 1 1
dx dx dx
— _ & _q DR =N 2]t =2In2 —1In3.
A (z+1)(z+2) A z+1 %;x+2 fnfw+ Llo =~ lnlz +2)]g =212 ~In3

2) On factorise le numérateur :

/1 da /1 doe 1]t L1 1
0o 2+6z+9  Jy (x+3)2 | z+3], 4 3 12
3) On intégre par parties puis on décompose en éléments simples :
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Inzx Inx 1
——dr = |— + / ——dx
/1 1+2)? [ 1+xL , 2(1+7)
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EXERCICE 2
1) On a
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2) Soit n € N. Posons u(z) = 2™ et v(z) = —g(l — 2)3/2 pour tout x € [0, 1]. Les fonctions u et v sont de classe C?,

W' (z) = nz" "t et v'(z) = /1 — x pour tout x € [0, 1]. La formule d’intégration par parties donne :
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On en déduit que
2
n—|—3In _ ann—l
3 3
et donc que
_2n
n — 27’l+3 n—1-

3) On raisonne par récurrence.
220 3nl(n+2)! 16 tral .
———— = = — = — également.
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Soit n € N. Supposons que I,, = et montrons que I,+1 =



D’apres la question précédente :
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Le théoreme de récurrence permet de conclure.

EXERCICE 3

1) La solution générale de I’équation homogene xy’ — y = 0 est définie par
Va €]0,+o0], y(z) = Az

ou A € R.

Pour trouver une solution particuliere de 1’équation avec second membre on utilise la méthode de variation de la
constante (en posant ¥(z) = x et y = z1) qui mene a

Inx

On trouve une primitive en intégrant par parties :

1 1 1 1 1
/ﬂdm:_ﬂjL/idx:_E_,.
22 x 2 x x

La fonction y définie par y(z) = —Inz — 1 est donc une solution particuliere de I’équation.

Les solutions de 1’équation sont donc les fonctions définies par
Vz €]0,4+o00f, y(x) = —Inz — 1+ Az
ou A € R.
2) La solution générale de I’équation homogene v/1 — 22y 4y = 0 est définie par
Vae]—1,1[ y(z) = he™ Aresine
ou A € R.

On voit que la fonction constante z +— 1 est une solution de 1’équation avec second membre.

Les solutions de I’équation sont donc les fonctions définies par
Vo e]—1,1[ y(z) = 1 + e~ Aresine
ou A € R.
3) La solution générale de I’équation homogene 2x(1 + z)y’ + (1 + z)y = 0 est définie par
Vz €]0,+o00[, y(z) = A

Bl

ou A € R.

Pour trouver une solution particuliere de ’équation avec second membre on utilise la méthode de variation de la

constante (en posant ¥ (x) = ﬁ et y = 24¢) qui meéne a

oy NT 1
YO = iy T aEd T )

On trouve une primitive en effectuant le changement de variable t = \/z (donc x = 2 et dz = 2t dt) :

dx ot dt
- = —/5H=A =A .
/ 2\/5(1 + LE) / Zt(]_ + t2) dt / 1 + t2 rCtant rctan \/.E




Arctan \/x . R . .
La fonction y définie par y(x) = Arctan vz est donc une solution particuliere de 1’équation.

VT

Les solutions de 1’équation sont donc les fonctions définies par

_ Arctan \/x n A

vV €]0, 400, y(x) NG NG

ol A € R.



